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ABSTRACT 
Resource Constrained Project Scheduling Problem (RCPSP) is a classical, well studied OR problem. Because of 
its NP-Hard nature, it is well suited to meta-heuristic (MH) algorithms; the performance of these algorithms 
are highly dependent on their initial parameters values, but this issue is ignored in most MH implementations, 
and only few researches have been performed in this area. This article offers a contribution to address this 
shortcoming using Conjoint Analysis (CA) and Case Based Reasoning (CBR). At first, different approaches to 
code RCPSP problem for Genetic Algorithm (GA) are explored, and then a novel full profile CA approach is 
used to propose parameterization schemes for sample projects to form initial case base; after forming the 
initial case base, Case Based Reasoning (CBR) is used to propose parameterization schemes for new projects. 
A Multivariate Data Analysis (MDA) model is devised to determine the near optimal parameterization scheme 
for RCPSP. The performance of the proposed model is compared with GA algorithm with average 
parameterization scheme and Tabu Search (TS) algorithm. The results show the superiority of this approach 
to random parameterization of GA algorithm. 
Key Words: Resource Constrained Project Scheduling Problem (RCPSP), Conjoint Analysis (CA), Case Based 
Reasoning (CBR), Genetic Algorithm (GA). 
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INTRODUCTION 

Resource Constrained Project Scheduling Problem 
(RCPSP) has been a research topic for many decades, and 
several optimization schemes have been used to solve this 
problem [1]. RCPSP aims at minimizing the total duration 
of the project subject to two types of constraints: 
precedence and resource constraints. Precedence 
relationships force some activities to begin after the 
finalization of others. In addition to precedence 
constraints, every activity requires a predefined amount of 
resources. There are different types of resources identified 
in the literature based on different perspectives, including 
renewable, non-renewable, and doubly constrained 

resources [2].  RCPSP considers resources of limited 
availability and activities of known durations and 
resource requests, linked by precedence relations. The 
problem consists of finding a schedule of minimal 
duration by assigning a start time to each activity such 
that the precedence relations and the resource 
availabilities are respected. 
According to the computational complexity theory [3], 
RCPSP belongs to the class of problems that are NP-hard 
in the strong sense [4-6]. There is a broad spectrum of 
methods used to solve RCPSP. Detailed history of 
methods used to solve RCPSP is described in [7, 8]. 
According to NP-Hard complexity of RCPSP, researchers 
believe that optimal solution can be achieved by exact 
procedures only in small projects, usually with less than 
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60 activities [9] and less than two renewable resources 
[10]. An overview of deterministic, heuristic, and meta-
heuristic methods used to solve RCPSP is illustrated in 
Table 1. The focus is more on meta-heuristics.  
 

Table 1: Overview of algorithms used to solve RCPSP 
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1 (Slowinski 
1980) [11] *           

2 (Patterson 1984) 
[12] *           

3 (Mingozzi et al. 
1998) [13]   *         

4 
(RAMLOGAN 
and GOULTER 

1989) [14]    *        

5 (Fleszar and 
Hindi 2004) [15]     *       

6 
(Tonius Baar, 
Brucker, and 

Knust 1998) [16]      *      

7 

(Artigues, 
Michelon, and 
Reusser 2003) 

[17] 
     *      

8 

(Palpant, 
Artigues, and 

Michelon 2004) 
[18] 

      *     

9 (BOCTOR 
1996) [19]        *    

10 
(Bouleimen and 
Lecocq 2003) 

[20]        **    

11 (Thomas and 
Salhi 1998) [21]         **   

12 (Debels et al. 
2006) [22]        * **   

13 

(Merkle, 
Middendorf, and 
Schmeck 2002) 

[23] 
        * **  

14 
(Kochetov and 
Stolyar 2003) 

[24]         **   

15 (Mori and Tseng 
1997) [25]         *  * 

16 (Ozdamar 1999) 
[26]          * * 

17 
(Sonke 

Hartmann 2001) 
[27]         *  * 

18 

(Kohlmorgen, 
Schmeck, and 
Haase 1999) 

[28] 
          * 

19 
(Alcaraz and 
Maroto 2001) 

[9]           * 

20 (Lova et al. 
2009) [29]           * 

21 (Zoulfaghari et 
al. 2013) [30]           * 

Heuristic procedures seek acceptable solutions with few 
computational requirements, instead of necessarily 
optimal solution. Heuristic and meta-heuristic procedures 
are suitable for large projects with large number of 
resources. These procedures are divided into construction 
and improvement heuristics [31]; construction heuristics 
are used to generate a first solution in a reasonable 
amount of time. Improvement heuristics are used to 
improve constructed solutions.  
Meta-heuristics aim at dealing with the main problems of 
heuristic methods including their problem specific nature 
and shortcomings in escaping from local optima and 
exploring neighbors. Most meta-heuristics include 
stochastic components [32]. [8] shows that meta-
heuristics outperform heuristic algorithms in RCPSP. 
Several meta-heuristic algorithms have been used to solve 
RCPSP. Simulated annealing belongs to improvement 
heuristics, and the method attempts to simulate the way 
metals cool and anneal [33]. [8, 19, 20] used simulated 
annealing to solve RCPSP. Tabu search is another meta-
heuristic algorithm that tolerates non-improving moves in 
the neighbor. A short term memory of recent moves or 
solutions called Tabu list is used to prevent cycling. Some 
of the most important researches that use Tabu search for 
RCPSP are [16, 21, 22]. Evolutionary approaches are the 
most popular heuristic approach for RCPSP. In these 
approaches, population of solutions evolves according to 
specific algorithm [34]. [23] used ant colony optimization 
together with local search to solve RCPSP. [24] proposed 
a hybrid evolutionary method based on path relinking, 
Grasp and Tabu search. Genetic algorithm is the most 
popular optimization scheme for RCPSP in recent years 
and has been proposed by [9, 25-30, 35, 36].  
Comparing the numerical results of some of these 
researches, genetic algorithm used by [9] outperformed 
simulated annealing used by [20] and genetic algorithm 
proposed by [36]; this is because of different 
representation schemes used, natural date variables for 
[36], and set-based representation for [9].  
CBR is a promising AI approach for problem solving that 
suggests new solutions to problems by adapting the most 
similar old solutions to the new problem [37]. CBR has 
four distinct phases known as CBR R4-cycle including 
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retrieve, reuse, revise, and retain. CBR related method 
was also successfully used for optimization problems and 
especially combinatorial optimization problems including 
TSP [38, 39], knapsack problem [40], and wide range of 
scheduling related problems, [41] implying that CBR is 
an appropriate approach for scheduling problems. Some 
of the successful applications of CBR in this area are: 
production planning and control problems [42], dynamic 
production scheduling [43], meta-heuristic time tabling 
[44, 45], meta-heuristics runtime estimation [46], and 
project scheduling [47].  
The performance of meta-heuristics is highly dependent 
on their parameter values initialization. There is no formal 
process to define parameter values at the start of using 
meta-heuristics, and the parameter values are highly 
dependent on problem nature itself. There are few efforts 
performed to develop formal models for initial 
parameterization in the area of combinatorial problems, 
especially scheduling related problems. one of the major 
efforts in this area is development of self-optimization 
module that can propose meta-heuristic algorithm and its 
parameterization  scheme for dynamic scheduling 
problem using case based reasoning [41, 43]. Those 
articles depend on randomly suggesting parameterization 
schemes for some projects to develop initial case base and 
then proposing parameterization scheme based on 
similarity between new project and projects stored in case 
base. They provide no rule for developing dependable 
case base.   
Conjoint Analysis (CA) is a multivariate data analysis 
(MDA) and data mining technique used to clarify how 
respondents develop preferences for products and services 
[48]. The dependent variable is a measure of respondents’ 
preferences and can be metric or non-metric. The 
independent variables are dummy variables representing 
attributes of multi-attribute products or services; these 
preferences are the inputs for market simulation 
techniques [49].  CA has been used in many areas 
including food industry [50], psychology [51], healthcare 
[52], supply chain management [53], and operations 
management [54].  
This is the first study that uses CA to address the MH 
algorithms parameterization issue; CA has been used to 
find the optimal parameterization scheme for MH 
algorithms in RCPSP resolution; according to the 
popularity of using GA for RCPSP resolution, MH 
algorithm was used for the study. After forming initial 
case base with CA, CBR was used to propose 
parameterization scheme for new projects. The rest of the 
article is organized as follows: section 2 describes the 
RCPSP formulation as optimization problem and coding 
of this problem to solve by MH algorithm; section 3 
describes the CA algorithm and CBR; section 4 evaluates 

the performance of proposed Conjoint Based CBR 
algorithm. 

RCPSP 

RCPSP can be defined as a combinatorial optimization 
problem. A combinatorial optimization problem is 
defined by a solution space X, which is discrete or can be 
reduced to a discrete set by a subset of feasible solutions 
𝑌𝑌 ⊆ 𝑋𝑋 associated with an objective function 𝑓𝑓:𝑌𝑌 → 𝑅𝑅. A 
combinatorial optimization problem aims at finding a 
feasible solution y ∈ Y such that f(y) is minimized or 
maximized. A resource-constrained project scheduling 
problem is a combinatorial optimization problem defined 
by a tuple (V, p, E, R, B, b) [34] in which this tuple 
members are representing activity set, duration set, 
resource set, availability of resources set, and required 
resources by activity set, respectively. Equation 1 shows 
the RCPSP as an optimization problem. The make span of 
schedule S is equal to 𝑆𝑆𝑛𝑛+1 which is the startup of end 
activity (activities 0 and n+1 are fictitious activities 
representing start and end of the project); 𝑝𝑝𝑖𝑖 represents 
the duration of activity; 𝐴𝐴𝑖𝑖 𝑏𝑏𝑖𝑖𝑖𝑖 represents the amount of 
resource 𝑅𝑅𝑖𝑖 used per time during the execution of 
activity; 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 denotes the availability of 𝑅𝑅𝑖𝑖. 

Equation 1: Formulation of RCPSP as an integer 
programming problem 

Resource Constrained Project Scheduling 
Problem(Project Duration Minimization) 
Objective 
Function: 𝑚𝑚𝑚𝑚𝑚𝑚: 𝑆𝑆𝑛𝑛+1 

Constraints: 𝑆𝑆𝑗𝑗 − 𝑆𝑆𝑖𝑖                     ∀(A𝑖𝑖,Aj)∈𝐸𝐸 

 � 𝑏𝑏𝑖𝑖𝑖𝑖 ≤ 𝐵𝐵𝐾𝐾
𝐴𝐴𝑖𝑖∈𝐴𝐴𝑡𝑡

      ∀RK∈R , ∀ t≥0 

 

RCPSP Coding (Schedule Generation Scheme) 
Most times, optimization algorithms operate on problem 
specific representation of the problem, instead of 
solutions directly, and during decoding procedure, this 
representation is translated into a solution. There are two 
main SGSs: serial and parallel. In serial SGS, the first 
activity (dummy activity representing project start with 
duration=0) starts at 0, and other activities are scheduled 
based on the activity list and resource constraints. In 
parallel SGS, the decision points are computed in which 
the activities must be scheduled. These decision points are 
calculated by earliest finish time of activity/activities 
currently in progress. Set of eligible activities, the 
activities which can be feasibly started, are computed for 
each decision point and started until none of them remains 
[4]. [55] pointed out that the activity list representation 
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and serial SGS deliver better results compared to other 
representation schemes of RCPSP. According to the 
findings, serial SGS is used for coding. For representing 
each project, using GA, each chromosome is as long as 
the number of project activities, and each gene is a 
random number between 0 and 1. By sorting the genes of 
each chromosome and replacing each gene number with 
its rank, a rough schedule is generated. This schedule is 
repaired according to precedence constraints. Figure 1 
shows a sample project; these processes are shown in 

Figure 2; this feasible schedule is used to develop the 
final schedule according to resource constraints.  
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Fig. 1: Sample project network 

 

 
Fig. 2: Network generation scheme

Genetic Algorithm Implementation on RCPSP 
In RCPSP like other engineering problems, genetic 
algorithm includes encoding, selection, cross-over, 
mutation, substitution, and iteration operations. 
Considering these operations within chronological order, 
the final stages are: 

• Encoding 
• Creating random population and evaluation 
• Selecting parents and using them to create 

children (cross-over) 
• Selecting population members for mutation and 

creating mutated population 
• Combining parent, cross-over and mutated 

population and creating new population 

These stages are illustrated in Figure 3. The main issues 
that should be considered in practicing genetic algorithm 
are: 1. exploration and exploitation ability; 2. 
convergence and diversity of population, and 3. the nature 
of different RCPSPs. One of the most important issues in 
this part is the feasibility of each solution that are 
guaranteed using the repair mechanism after generation of 
different random schedules. There are different 
termination rules for genetic algorithm like any meta-
heuristic algorithm including: reaching acceptable value, 
certain amount of iterations, computation time, the 
number of function evaluations, and stalled iterations 
[56].
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Fig. 3: Genetic algorithm flowchart
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The main areas adjusted in GA to find the best or 
acceptably good parameterization scheme are: 

1. Selecting parents 
2. Combining parents (cross-over mechanisms) 
3. Selecting population members for mutation 
4. Mutation 
5. Selecting new population 

Detailed programming of these items will be discussed in 
the following sections. 
Selection 
The first population is created by generating random 
numbers for each gen and then sorting the gens and 
repairing random schedule generated. There are different 
parent selection methods used in this study: roulette 
wheel selection [57], tournament selection [58], and 
random selection of one of  these two methods. In roulette 
wheel selection, selection is based on random number 
generation and probability values. In tournament 
selection, samples with ‘m’ members were selected from 
the population, and the best member of this sample was 
selected as a parent; in this method, the worst m-1 
members of the population have no chance to be selected 
as a parent. In roulette wheel selection, selection is based 
on discrete statistical distribution; a good example is 
Boltzmann method (Equation 2) [59]: 

Equation 2 
𝑝𝑝𝑖𝑖 ∝ 𝑒𝑒−𝑐𝑐𝑖𝑖 

The probabilities can be altered using selection pressure 
parameter (β); by imposing selection pressure to 
probabilities, the environment can be changed. New 
probabilities (𝑝𝑝𝑖𝑖) are calculated using Equation 3: 

Equation 3 

𝑝𝑝𝑖𝑖 =
(𝒑𝒑𝒊𝒊′)𝜷𝜷

∑ (𝒑𝒑𝒋𝒋′)𝜷𝜷𝒋𝒋
 

If β=0, the fine selection becomes the uniform random 
selection, and if β→∞, only the member with the greatest 
value of 𝒑𝒑𝒊𝒊′ is selected. If β is imposed to Boltzmann 
method, the final value of probabilities is calculated using 
Equation 4. 

Equation 4 

𝑝𝑝𝑖𝑖 =
𝒆𝒆−𝜷𝜷𝒄𝒄𝒊𝒊

∑ 𝒆𝒆−𝜷𝜷𝒄𝒄𝒋𝒋𝒋𝒋
 

Crossover 
Based on the type of coding (binary or continuous), 
different operations have been used for cross-over. Within 
binary problems, single and double point cross overs are 
more popular. In single point cross-over, two 
chromosomes are cut at the same point, and their parts are 
shifted and create two child chromosomes; in double 

point cross-over, there are two cutting points, and the 
central part of two chromosomes are replaced and create 
two child chromosomes. The other method for discrete 
environments is uniform cross-over [60]; in this method, 
the child chromosomes, 𝑦𝑦1𝑖𝑖 and 𝑦𝑦2𝑖𝑖, are calculated using 
Equation 5. This method has more exploration ability in 
comparison with previous methods. 

Equation 5 
𝑦𝑦1𝑖𝑖 =∝𝑖𝑖 𝑥𝑥1𝑖𝑖 + (1 −∝𝑖𝑖)𝑥𝑥2𝑖𝑖 

𝑦𝑦2𝑖𝑖 =∝𝑖𝑖 𝑥𝑥2𝑖𝑖 + (1 −∝𝑖𝑖)𝑥𝑥1𝑖𝑖 

∝𝑖𝑖∈ {0,1} 

In this problem, because of its continuous nature, each 
gene is a real number in the range of [𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]. The 
above mentioned methods are not applicable, so the 
Arithmetic cross-over is used; this method is similar to 
uniform cross-over unless 0 ≤∝𝑖𝑖≤ 1. In order to 
strengthen the exploration ability of the algorithm and 
cover the areas outside the range of two parents, the 
parameter gamma and −𝛾𝛾 ≤∝𝑖𝑖≤ 1 + 𝛾𝛾  were used. 
Mutation 
In mutation, the intensity of changes must be determined. 
For this purpose, the mutation influence factor (0 ≤
𝜋𝜋𝑚𝑚 ≤ 1) was used (Equation 6); if 𝜋𝜋𝑚𝑚 = 1, all genes will 
undergo mutation, and if 𝜋𝜋𝑚𝑚 = 0, no mutation will be 
performed on the chromosome.  

Equation 6 
𝑁𝑁𝑁𝑁𝑚𝑚𝑏𝑏𝑒𝑒𝑁𝑁 𝑜𝑜𝑓𝑓 𝑚𝑚𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚 𝑔𝑔𝑒𝑒𝑚𝑚𝑒𝑒𝑔𝑔 = 𝜋𝜋𝑚𝑚.𝑚𝑚𝑣𝑣𝑚𝑚𝑣𝑣 

In binary problems, the only thing which has to be done is 
changing the genes values from 0 to 1 or 1 to 0; in integer 
problems, the genes only have to change to other integer 
numbers. In real problems, the gene value could be any 
number within the defined range and selected randomly 
[61]. Creating new population 
There are three different population generation methods 
during running GA. The first one is merge, sort and 
truncate, predefined share of parents, children (cross-
over) and mutated ones, merge and select randomly, and 
performing mutation only on offspring generated 
members. In this study, these methods are used randomly 
to create new population.  

CONJOINT ANALYSIS 

CA is a relevant tool in understanding how costumers 
make product selection decisions and determine 
attributes/features’ importance. Here, CA based 
parameterization module is responsible for providing 
parameterization scheme for RCPSP. CA is a multivariate 
data analysis (MDA) and data mining technique used to 
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clarify how respondents develop preferences for products 
and services [48]. The dependent variable is a measure of 
respondents’ preferences and can be metric or non-metric; 
the independent variables are dummy variables 
representing attributes of multi-attribute products or 
services; these preferences are the inputs for market 
simulation techniques [49]. CA has been used in many 
areas including food industry [50], psychology [51], 
healthcare [52], supply chain management [53], and 
operations management. In this article, parameters of 
genetic algorithm become the attributes of CA.  
The main parameters of CA are: 𝑚𝑚: total number of cards 
(combinations of parameters values); 𝑝𝑝: total number of 
factors (GA parameters); 𝑚𝑚: total number of discrete 
factors; 𝑙𝑙: total number of linear factors; 𝑞𝑞: total number 
of quadratic factors; 𝑚𝑚𝑖𝑖: the number of levels for ith 
discrete factor; 𝑚𝑚𝑖𝑖𝑗𝑗 the jth level of ith discrete factor; 

1,2,..., ,i d=  𝑥𝑥𝑖𝑖: the ith linear factor; 𝑧𝑧𝑖𝑖: the ith ideal or anti-
ideal factor; 𝑁𝑁𝑖𝑖: the ith ideal or anti-ideal factor, and 𝑚𝑚: the 
total number of subjects analyzed at the same time. The 
response 𝑁𝑁𝑖𝑖 for the ith card (product) is calculated using 
Equation 7. 𝑁𝑁𝑗𝑗𝑖𝑖𝑗𝑗𝑖𝑖 is the utility (part worth) associated with 
the kjith level of jth factor on the ith card.  

Equation 7 

ri = β0 + �ujkji

p

j=1

 

Design matrix is another important part of CA; there is a 
row for each card (parameter values combination) in the 
plan file, and the columns of this matrix are defined by 
each factor variable which can be discrete or linear; the 
first column is used to estimate 𝛽𝛽0∗; for discrete factors 
with 𝑚𝑚𝑖𝑖 levels, 𝑚𝑚𝑖𝑖 − 1 columns are formed, each 
representing the deviation of one of the factors from the 
overall mean. The values of 1, a-1, and 0 are inserted in 
the column if the observed level is overall mean, last level 
of factor, or otherwise, respectively. These columns are 
used to estimate the value of 𝛼𝛼𝑖𝑖𝑗𝑗. For linear factors, there 
is a column for each factor which is the centered 
(normalized) value of that factor (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑖𝑖) used to 
estimate 𝑏𝑏𝚤𝚤� . For each quadratic factor, there are two 
columns: one with centered (normalized) value of factor 
(𝑧𝑧𝑖𝑖𝑗𝑗 − 𝑧𝑧𝑖𝑖) and the other is the square of the centered 
(normalized) value of the factor (𝑧𝑧𝑖𝑖𝑗𝑗 − �̂�𝑧𝑖𝑖)2. These two 
columns are used to estimate the values of  𝛾𝛾�.  
Observations are represented by score or converted to 
ranks. The general formula for estimates is illustrated in 
Equation 8. These estimates are calculated using QR 
decomposition method. 𝑦𝑦 represents ranks/scores of the 
cards and calculated using Equation 9. The variance-

covariance matrix of the above mentioned estimates is 
illustrated in Equations 10 and  11.  

Equation 8 
(�̂�𝛽𝑖𝑖

∗𝛼𝛼� �̂�𝛽 𝛾𝛾�∗)′ = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑦𝑦 

Equation 9 

𝑦𝑦𝑖𝑖 = �𝑁𝑁𝑖𝑖                  𝑚𝑚𝑓𝑓 𝑁𝑁𝑒𝑒𝑔𝑔𝑝𝑝𝑜𝑜𝑚𝑚𝑔𝑔𝑒𝑒𝑔𝑔 𝑚𝑚𝑁𝑁𝑒𝑒 𝑔𝑔𝑠𝑠𝑜𝑜𝑁𝑁𝑒𝑒𝑔𝑔
𝑚𝑚 + 1 − 𝑁𝑁𝑖𝑖    𝑚𝑚𝑓𝑓 𝑁𝑁𝑒𝑒𝑔𝑔𝑝𝑝𝑜𝑜𝑚𝑚𝑔𝑔𝑒𝑒𝑔𝑔 𝑚𝑚𝑁𝑁𝑒𝑒 𝑁𝑁𝑚𝑚𝑚𝑚𝑟𝑟𝑔𝑔 

Equation 10 

𝜎𝜎�2(𝑋𝑋′𝑋𝑋)−1 

Equation 11 

𝜎𝜎�2 = ���𝑁𝑁𝑖𝑖𝑗𝑗 − �̂�𝑁𝑖𝑖𝑗𝑗�
2/(𝑚𝑚𝑚𝑚 − 𝑚𝑚 − 𝑙𝑙 − 2𝑞𝑞 − 1)

𝑛𝑛

𝑗𝑗=1

𝑡𝑡

𝑖𝑖=1

 

 
The value of 𝛾𝛾� is calculated using Equation 12 and 
Equation 13. 

Equation 12 

𝛾𝛾�𝑖𝑖1 = 𝛾𝛾�𝑖𝑖1∗ − 2𝛾𝛾�𝑖𝑖2∗ ∗ 𝑧𝑧�̅�𝑖 

Equation 13 

𝛾𝛾�𝑖𝑖2 = 𝛾𝛾�𝑖𝑖2∗  

Considering these equations, utility values for different 
factor levels including discrete, linear, and ideal\anti ideal 
factors are calculated using Equations 14 to 16, 
respectively.    

Equation 14 

𝑁𝑁�𝑗𝑗𝑖𝑖 =

⎩
⎨

⎧
𝑚𝑚�𝑗𝑗𝑖𝑖               𝑓𝑓𝑜𝑜𝑁𝑁 𝑟𝑟 = 1, … ,𝑚𝑚𝑗𝑗 − 1

− � 𝑚𝑚�𝑗𝑗𝑖𝑖              𝑓𝑓𝑜𝑜𝑁𝑁 𝑟𝑟 = 𝑚𝑚𝑗𝑗

𝑚𝑚𝑗𝑗−1

𝑗𝑗=1

 

 
Equation 15 

𝑁𝑁�𝑗𝑗𝑖𝑖 = �̂�𝛽𝑗𝑗𝑥𝑥𝑖𝑖 

Equation 16 
𝑁𝑁�𝑗𝑗𝑖𝑖 = 𝛾𝛾�𝑗𝑗1𝑧𝑧𝑗𝑗𝑖𝑖 + 𝛾𝛾�𝑗𝑗2𝑧𝑧𝑗𝑗𝑖𝑖2 

 
Importance factor is another important outputs of conjoint 
analysis which illustrates the effect of each factor on final 
quality of solution [62]. The importance factor of factor i 
is calculated using Equation 17. 𝑅𝑅𝐴𝐴𝑁𝑁𝑅𝑅𝐸𝐸𝑖𝑖 equals to the 
highest minus lowest utility of factor i.  
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Equation 17 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = 100
𝑅𝑅𝐴𝐴𝑁𝑁𝑅𝑅𝐸𝐸𝑖𝑖

∑ 𝑅𝑅𝐴𝐴𝑁𝑁𝑅𝑅𝐸𝐸𝑖𝑖
𝑝𝑝
𝑖𝑖=1

 

There are two remaining issues in implementing CA. The 
first is predicted score for each factor in the case of 
forecasting scores for new combinations of parameters 
values performed using Equation 18; the second is the 
correlation calculation within this algorithm calculated 
between predicted score (�̂�𝑁𝑖𝑖) and the observed responses 
(𝑁𝑁𝑖𝑖) for Pearson and Kendall correlations [63].  

Equation 18 

�̂�𝑁𝑖𝑖 = �̂�𝛽0 + �u�jkji

p

j=1

 

For simulation applications of CA, the probability 𝑝𝑝𝑖𝑖 
should be assigned to each simulation card i (parameter 
values combination). These probabilities are computed 
based on predicted score (�̂�𝑁𝑖𝑖) for that combination. The 
main probability functions t used in this article for 
simulation purpose are maximum utility [64], BTL [65], 
and Logit [66]; these three methods are illustrated in 
Equation 19, Equation 20, and Equation 21, respectively. 
Probabilities are averaged across different respondents 
(runs of meta-heuristic algorithms for each combination) 
in order to obtain grouped simulation results. For the last 
two methods of probability calculation (BTL and Logit), 
only subjects with positive �̂�𝑁𝑖𝑖 are considered. 

Equation 19 

𝑝𝑝𝑖𝑖 = �1            𝑚𝑚𝑓𝑓 �̂�𝑁𝑖𝑖 = max (�̂�𝑁𝑖𝑖)
0                      𝑜𝑜𝑚𝑚ℎ𝑒𝑒𝑁𝑁𝑒𝑒𝑚𝑚𝑔𝑔𝑒𝑒

 

 
Equation 20 

𝑝𝑝𝑖𝑖 =
�̂�𝑁𝑖𝑖
∑ �̂�𝑁𝑗𝑗𝑗𝑗

 

Equation 21 

𝑝𝑝𝑖𝑖 =
𝑒𝑒�̂�𝑣𝑖𝑖

∑ 𝑒𝑒�̂�𝑣𝑗𝑗𝑗𝑗
 

 
By summing the par-worth of each parameter level in 
each card, the total utility of the card can be calculated. 
Because of the time consuming process of CA, this 
process has been simulated using CBR; based on CBR, 
the optimal initial parameterization  scheme for new 
projects was determined by adapting the initial 
parameterization   scheme of the previous known project 
which is most similar to this new project. The overall 
process of CBR is described in the following section, and 
then the empirical results of using CA-CBR modules are 
presented.  

CASE BASED REASONING (CBR) 

CBR is a promising AI approach for problem solving that 
suggests new solutions to problems by adapting the most 
similar old cases’ solutions to the new problem [37]. This 
approach was inspired by human thinking and behavior. 
In facing a problem, people search their memory for past 
experiences with similar situational attributes, they 
analyze retrieved experiences and apply the learned 
lessons in these experiences to develop new solutions, 
and finally, they memorize the problem with 
success\failure of the final solution for future problems 
[67]. CBR has four distinct phases known as CBR R4-
cycle illustrated in Figure 4 [68]:  

1. Retrieve: in this phase, a case-base contains 
previously solved problems, and their related 
solutions are searched, and problems similar to 
the new problem are retrieved. 

2. Reuse: the solutions related to the retrieved cases 
are used for solving the new problem through 
direct using or some combining mechanisms. 

3. Revise: the solution resulted from the previous 
phase is revised and adapted for solving the new 
problem. 

4. Retain: the new problem and its solution are 
added to the case-base as a new case. 
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Fig. 4: The CBR Cycle [64] 

 
CBR is successfully applied to wide spectrum of 
applications for various purposes including planning, 
diagnosis, classification, design, decision making, 
explanation, and interpretation [69]. CBR related method 
were also successfully used for optimization problems 
and especially combinatorial optimization problems 
including TSP [38, 39], knapsack problem [40], and wide 
range of scheduling related problems [41], implying that 
CBR is an appropriate approach for scheduling problems. 
Some of the successful applications of CBR in this area 
are: production planning and control problems [69], 
dynamic production scheduling [43], meta-heuristic time 
tabling [44, 45], meta-heuristics runtime estimation [46], 
and project scheduling [47]. 
In the retrieve phase, the similarity of new project with 
projects stored in the case base is assessed using 
parameters presented in Table 2. N is the number of nodes 
in project Activity on Node (AON) diagram; A is the 
number of activities (arcs in AON diagram); A’ is the 
number of nun-redundant arcs in project diagram; Pi and 
Si are the number of predecessors and successors, 
respectively. Based on these similarity measures, the two 
most similar projects stored in the case base were 
retrieved, and the duration of new project was calculated 
using both suggested parameterization schemes, and the 
new project with parameterization scheme with lower 
duration value was saved in the case base.  

Table 2: Case and solution representation 
Solution Parameterization  schemes 

Case related 
attributes 

T-density  (- ∑ 𝐼𝐼𝑚𝑚𝑥𝑥(0,𝐼𝐼𝐼𝐼 − 𝑆𝑆𝑖𝑖)𝑁𝑁
𝑖𝑖=1 )-[70] 

C (A’/N)- [71] 
CNC (A/N) [72] 

Sum of the duration of activities 

# of renewable resources 
# of activities 

 
COMPUTATIONAL RESULTS OF CA-CBR 
PARAMETERIZATION MODULE 
 
This section summarizes the main computational results 
indicating the effectiveness of abovementioned CA-CBR 
self-optimization module. Instances from Project 
Scheduling Problem Library–PSPLIB [73], containing 
several RCPSP instances categorized into the groups of 
30, 60, 90, and 120 activity projects, were used. The 
machine used for computational study was a server with 2 
AMD OPTERON 6134 processors (2.3 GHz, 8 cores) and 
32GB RAM. The CA-CBR module was implemented in 
MATLAB, and orthogonal design for CA was designed in 
IBM SPSS statistics. The computational study was 
divided into three main phases. In the first phase, the 
initial sample for CA was selected from PSPLIB; the 
duration sample projects were calculated for 50 times 
using parameter values proposed by CA. Parameter 
values were proposed using orthogonal design similar to 
designing cards in CA. In the second phase, with the 
objective to analyze the CBR evolution, the results of 30 
executions were obtained for each instance, after 
integrating the CA-CBR optimization module. At the last 
phase, the performance of CA alone was investigated. 
The main parameters of GA used as conjoint factors are: 
maximum number of iterations, population size (initial 
population), crossover percentage, mutation percentage, 
gamma, and selection schemes. These factors with their 
different levels are illustrated in Table 3. 
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Table 3: Factors and their levels 
Factor # of levels Levels 

Maximum 
number of 
iterations 

4 500, 700, 1000, 1200 

Initial population 4 50, 70, 100, 120 
Cross–over 
percentage 5 0.1, 0.2, 0.3, 0.4, 0.5 

Mutation 
percentage 5 0.01, 0.02,0.03,0.1,0.2 

Gamma 5 0.1, 0.2, 0.3, 0.4, 0.5 

Selection scheme 3 Roulette Wheel Selection, 
Tournament Selection, Random 

 
In the present study, the full profile approach was used 
[74]; because of considerable amount of choices, some 
sort of fractural factorial design was used to create 
suitable fraction of all possible combinations of the factor 
levels (orthogonal array). Orthogonal array was designed 
to capture the main effects for each factor level. The 
output of data analysis is a utility score (called part-
worth) for each factor level, and part-worth provides a 
quantitative measure of the preference for each factor 
level, with larger part-worth values corresponding to 
greater preference. Regardless of different types of CA, 
maximum number of combinations (parameterization  
schemes) should be no more than 30 [48]. By creating 
orthogonal array, 25 different combinations of factor 
levels (cards) were created to calculate part-worths. [48] 
recommended the minimum number of 50 respondents 
for CA, so each parameterization scheme was run for 50 
times. The part-worth values for sample projects are 
illustrated in Table 4; for example, the utility of a 
parameterization  scheme of 60 activity project using GA 
with the values “roulette wheel selection’, 120, 70, 0.3, 
0.02, and 0.3 for Selection Scheme, Maximum Iteration, 
Initial Population, Cross-Over Percentage, Mutation 
Percentage, and Gamma is 
0.745+3.889+5.616+5.594+0.092-0266=15.67. All the 
calculations have no reversals, which means no 
combination (parameterization scheme) has different 
pattern from the main pattern calculated using CA. Based 
on these results, the importance of utility (part-worth) 
values of GA parameters for project instances with 60, 90, 
and 120 activities were calculated (Figure 5). For 30 
activity projects, no difference was observed between the 
results of different parameterization schemes, so they 
were omitted from the chart. According to this chart, 
cross-over percentage is the most important attribute in all 
projects; the second most important attribute is the initial 
population for 60 and 90 activity projects and the 
maximum number of iterations for 120 activity projects. 

 

Table 4: Utility (part-worth) values of GA parameters 
for project instances with 60, 90, and 120 activities 

Factor Factor 
levels 

60 Activity 
project 

90 Activity 
project 

120 Activity 
project 

SelecSch 

Roulette 
wheel 

Selection 
.743 .469 -.433 

Tournament 
selection .651 1.457 .887 

Random 
selection -1.393 -1.927 -.453 

MaxIt 

50 1.621 2.838 4.168 
70 2.269 3.973 5.835 

100 3.241 5.676 8.336 
120 3.889 6.812 10.003 

InitPop 

50 4.011 3.626 3.658 
70 5.616 5.076 5.121 

100 8.023 7.252 7.315 
120 9.627 8.702 8.779 

COPerc 

0.1 1.865 2.366 2.433 
0.2 3.730 4.733 4.866 
0.3 5.594 7.099 7.298 
0.4 7.459 9.466 9.731 
0.5 9.324 11.832 12.164 

MuPerc 

0.01 .046 .109 .067 
0.02 .092 .219 .134 
0.03 .138 .328 .202 
0.1 .461 1.093 .672 
0.2 .922 2.186 1.344 

Gamma 

0.1 -.089 .100 -.234 
0.2 -.178 .200 -.467 
0.3 -.266 .300 -.701 
0.4 -.355 .400 -.934 
0.5 -.444 .500 -1.168 

 
Fig. 5: Importance values of GA parameters 

calculated using CA 

In the first phase, by calculating the part-worth values for 
selected projects, the initial case base of CA-CBR 
optimization module was formed. At this point, three 
main objectives arose: first, understanding how the 
proposed CA-CBR module can evolve in its lifetime; 
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second, understanding if CBR usage is worth or not, and 
third, analyzing the comparison between the results 
before and after the integration of CA-CBR optimization 
module. In the second phase, the CBR cycle determines 
the proper parameterization scheme for new projects. 
There are two main criteria used to assess the 
performance of Hybrid CA-CBR parameterization 
module: evolution and effectiveness. After forming the 
initial case base, CBR was used to propose 
parameterization schemes for new projects. In order to 
assess the performance of CA-CBR module, two other 
optimization scenarios were used as baseline: Tabu search 
(TS) and GA with random parameterization scheme; 
duration of every new project was calculated 30 times 
using the mentioned optimization scenarios.  
Both average and minimum calculated duration were 
investigated to assess the evolution and effectiveness. In 
order to compare the results of different projects, the 
reduction time (calculated duration/sum of the activity 
durations) was used. Figure 9 and Figure 10 show the 
evolution of average and minimum durations, 
respectively. In these figures, the evolution of both 
average and minimum durations is calculated for GA with 
random parameterization scheme; Tabu Search (TS) 
algorithm and parameterization scheme are suggested by 
CA-CBR parameterization module. In many scientific 
articles in the field of meta-heuristics implementation, TS 
is used as a benchmark algorithm to assess the 
performance of new optimization models. CA-CBR 
parameterization module shows an average 10.63% 
reduction for minimum results which outperform both TS 
and GA with average values of 4.62% and 8.84%, 
respectively.   

 
Fig. 6: Percentage of minimum results evolution (% of 

reduction comparing to initial results) 

 
Fig. 7: Percentage of average results evolution (% of 

reduction comparing to initial results) 

In the third phase, to assess the effectiveness of CA 
separately, the duration of sample projects (the initial case 
base) was calculated using GA with random 
parameterization scheme and TS with random parameter 
values for 50 times alongside with GA with optimal 
parameterization scheme suggested by CA. Table 5 shows 
the average and best parameterization schemes for sample 
projects with 60, 90, and 120 activities. Like the whole 
CA-CBR optimization module, both reduction 
percentages related to average and minimum durations 
values were evaluated. Figure 8 shows the difference 
between minimum calculated durations using average and 
best parameterization schemes for both GA and TS, and 
Figure 9 shows similar differences for average durations. 
For minimum durations, CA delivered 2.11% and 3.48% 
reduction between the average and best parameterization 
schemes for GA and TS, respectively; similarly for the 
minimum results, 3.2% and 5.12% reductions were 
observed for GA and TS.  

Table 5: Average and best parameterization schemes 

MH 
Algorithm 

Type of 
project 

Average 
parameterization  

scheme 

Best 
parmetrization 

scheme 

GA 

60 
Activity 
project 

Tournament Selection, 
MaxIt=70, 

InitiPop=70, 
CoPerc=0.3, 

MuPerc=0.03, 
Gamma=0.3 

Roulette Wheel 
Selection,  

MaxIt=120, 
InitiPop=120, 
CoPerc=0.5, 
MuPerc=0.2, 
Gamma=0.1 

90 
Activity 
project 

Roulette Wheel 
Selection , MaxIt=70, 

InitiPop=70, 
CoPerc=0.3, 

MuPerc=0.03, 

Tournament 
Selection, 

MaxIt=120, 
InitiPop=120, 
CoPerc=0.5, 

8.84

4.62

10.63

Minimum Results Evolution

GA TS Parametrization Module

7.49

4.48

9.87

Average Results Evolution

GA TS Parametrization Module
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Gamma=0.3 MuPerc=0.2, 
Gamma=0.5 

120 
Activity 
project 

Roulette Wheel 
Selection , MaxIt=70, 

InitiPop=70, 
CoPerc=0.3, 

MuPerc=0.03, 
Gamma=0.3 

Tournament 
Selection, 

MaxIt=120, 
InitiPop=120, 
CoPerc=0.5, 
MuPerc=0.2, 
Gamma=0.5 

 

 
Fig. 8: Effectiveness of CA-minimum duration values 

 
Fig. 9: Effectiveness of CA- Average Duration Values 

CA has more effect on the minimum results than the 
average results. If the results of evolution charts (Figures 
6 and 7) are combined with the results of the latter charts, 
some conclusions can be drawn about the effectiveness of 
CA in both average and minimum duration results. CBR 
was used in parameterization module for simulating CA, 
which was so time consuming (GA parameterization). 
Figures 8 and 9 show the total reduction percentage 
related to CA solely. By dividing these results to total 
evolution (Figures 6 and 7), CA attribution to total 

evolution can be determined; accordingly, about 20% of 
the minimum results evolution and 30% of the average 
evolution can be attributed to CA, which is a considerable 
amount. In Figures 8 and 9, only the parameterization 
schemes with average CA score were compared with the 
best CA score parameterization schemes, and the 
differences between the minimum and best CA score 
parameterization schemes were much higher. 

CONCLUSION AND RECOMMENDATIONS FOR 
FURTHER RESEARCHES 

Defining a proper parameterization mechanism for 
solving RCPSP has not been a popular topic in literature. 
The present study used, for the first time, CA for 
parameterization of meta-heuristic algorithm for RCPSP. 
The benefit of using CA is that it enables considering the 
correlation between different parameterization schemes, 
identifying reversals, and the most important one of all: 
identifying the most proper parameterization scheme and 
assuming problem constraints and preferences including 
computation time, final solution score, the number of 
function evaluations, etc. Because of the nature of the 
problem, MH sessions are regarded as respondents, and 
full profile approach is used in CA. This study aimed to 
overcome the shortcomings of the main previous efforts 
in parameterization of MHs in scheduling problems in the 
area of identifying best parameterization scheme in more 
statistically supported way compared with randomly 
running MHs with different parameterization schemes. 
There are some recommendations for further researches: 
designing intelligent system that can categorize different 
types of RCPSP problem and propose parameterization 
schemes for each category; adding algorithm selection 
function to this model prior to proposing parameterization 
schemes, and developing hybrid intelligent model for 
parameterization that uses conjoint outcomes as learning 
set for other classification methods. 
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