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1. INTRODUCTION 
Structural features of 10H Phenothiazines, 4H-1,4-
Benzothiazines,1-3 possess a broad spectrum of biological and 
pharmacological properties due to presence of a fold along the 
nitrogen and sulfur axis, which is considered to be responsible as 
one of the structural features to impart their activities. During the 
past two decades, the frequency of invasive and systemic fungal 
infections has increased dramatically in the population with altered 
immunity.4-5 Today available therapy in treating fungal infections 
can suffer from adverse effect like drug related toxicity, hazardous 
drug–drug interactions, non-optimal pharmacokinetics and 
development of drug resistance.6 Fungal infections remain a 
significant cause of morbidity and mortality, specially in 
immunocompromised patient where the incidence of life threatening 
fungal infections has risen dramatically.7  
The most common antifungal agents used in clinic are azoles (such 
as fluconazole, ketoconazole and itraconazole),8 polyenes (such as 
amphotericin B)9  and nystatin,10  echinocandins (such as 
caspofungin and micafungin)11 and allylamines (such as naftifine 
and terbinafine).12 Among these, azoles are widely used in 
antifungal chemotherapy.  
With the aim of developing a new class of antifungal drugs 
embracing certain characteristic structural features for effective 
drug–receptor interaction, 3DQSAR model was derived and 
develop for synthesis of new compounds by applying 
physiochemical parameters with multiple linear regression (MLR) 
method. To the best of our knowledge, till date such QSAR study 
has not been reported on benzothiazine as antifungal as discussed 
in this article. This inspired us to undertake this work. This study is 
aimed to elucidate the structural features of benzothiazine 
derivatives required for antifungal activity and to obtain predictive 

3D-QSAR models to guide the rational synthesis of novel antifungal 
drug. 
 
2.  MATERIALS AND METHODS  
The 3DQSAR studies were performed using the Molecular Design 
Suite (VLife MDS software package, version 3.5; from VLife 
Sciences, Pune, India), on a DELL PC with a Pentium IV processor 
and a Windows XP operating system. Structures were sketched 
using the 2D draw application and converted to 3D structures (VLife 
MDS 3.5, 2010). 
 
2.1 Biological Activity Dataset for QSAR Analysis 
The antifungal activity [MIC (µmol)] data against four fungal species 
(Candida albicans, Trichophyton rubrum, Epidermophyton 
floccosum and Malassazia furfur) of substituted 1,4-Benzothiazine 
derivatives were taken from the reported work,13 the result showed 
in table 1. The total 23 set of compounds was divided into a training 
set (18 compounds) for generating 3D QSAR models and a test set 
(5 compounds) for validating the quality of the models. Selection of 
the training set and test set molecules was done on the basis of 
structural diversity and a wide range of activity such that the test-
set molecules represent a range of biological activity similar to that 
of the training set; thus, the test set is truly representative of the 
training set. The biological activity values [MIC] reported in 
micromolar units(µM) were converted to their microgram units(µgm) 
and then further to negative logarithmic scale and subsequently 
used as the dependent variable for the QSAR analysis. 
 
2.2 Computational Details 
The structures of all 23 compounds were drawn in 2DDrawApp 
(MDS 3.5 2010). The 2D structures were converted to 3D structures 
by sending them to MDS. Each compound was energy minimized 
and batch optimized by using Merck Molecular Force Field (MMFF) 
and charges.14  
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Table 1: Pharmacology activity data of BTA series derivatives 
 

Sr. No. Compound Code C. albicans E. floccosum T. rubrum M. furfur 
1 BTA-4 0.250 0.125 0.250 0.125 
2 BTA-8 0.125 0.125 0.125 0.250 
3 BTA-5 0.125 0.125 0.125 0.125 
4 BTA-47 0.0625 0.0625 0.0625 0.125 
5 BTA-20 0.0625 0.0625 0.125 0.125 
6 BTA-43 0.0312 0.0625 0.125 0.125 
7 BTA-64 0.250 0.250 0.250 0.250 
8 BTA-35 0.125 0.125 0.125 0.0625 
9 BTA-25 0.125 0.250 0.0625 0.125 
10 BTA-66 0.250 0.250 0.125 0.250 
11 BTA-69 0.125 0.125 0.125 0.250 
12 BTA-63 0.250 0.125 0.250 0.250 
13 BTA-57 0.250 0.250 0.125 0.250 
14 BTA-58 0.250 0.250 0.125 0.125 
15 BTA-56 0.0625 0.0625 0.0312 0.0312 
16 BTA-65 0.250 0.250 0.250 0.250 
17 BTA-59 0.125 0.125 0.250 0.250 
18 BTA-60 0.250 0.250 0.250 0.125 
19 BTA-61 0.250 0.0625 0.125 0.250 
20 BTA-67 0.250 0.250 0.125 0.125 
21 BTA-68 0.125 0.250 0.125 0.125 
22 BTA-24 0.0625 0.0625 0.0625 0.0625 
23 BTA-70 0.125 0.125 0.250 0.250 
24 Ketaconazole (std) 0.0312 0.0312 0.0312 0.0312 

All MIC value in µmol/ml 
*Each result represents the average of triplicate reading. 
E. Floccusom= Epidermophyton. floccusom; M. ruburum = Microsporum. rubrum: M. furfur = Malassazia furfur 
 
 
2.2.1 Molecular Modeling for 3 D-QSAR 
 
2.2.1.1 Molecular Alignment 
 
Proper alignment of molecules is the most critical step in the ligand 
based 3D-QSAR modeling method to obtain meaningful results.15-16  
Molecular alignment is useful for studying shape variation with 
respect to the base structure selected for alignment (VLife MDS 
3.5, 2010). Energy-minimized and geometry optimized structures of 
molecules were aligned by the template-based method,17 where a 
template structure used for alignment of a set of molecules. The 
template structure, i.e. 1,4-Benzothiazine ring, was used for the 
alignment by considering the common elements of the series as 
shown in Fig. 1. The reference molecule is chosen in such a way 

that it is the most active among the series of molecules considered. 
The reference molecule is the molecule on which the other 
molecules of the align dataset get aligned based on the chosen 
template.18 Compound BTA-56 had very high inhibitory activities 
against all fungus which made it is a good lead molecule and 
therefore, was chosen as a reference molecule. After optimizing, 
the template structure and the reference molecule were used to 
superimpose all molecules from the series using the template 
alignment method to obtain optimal alignment between the 
molecular structures necessary for ligand–receptor interactions. 
This adjusts the geometry of the molecules such that their steric 
and electrostatic fields match the fields of the template molecule.19 
The superimposition of all molecules based on minimizing RMS 
deviation is shown in Fig. 2. 

 

 
 

Fig. 1: 1, 4-Benzothiazine ring as template used for alignment of 
Benzothiazine derivatives 

 
 

Fig. 2: 3D view of template based alignment of benzothiazine 
derivatives on the base template 

 
2.2.1.2 Molecular Descriptors 
 
MFA is a method for quantifying the interaction energy between a 
probe molecule and a set of aligned molecules in a rectangular grid 
box and can be useful in deriving 3DQSAR.20 This approach is 
effective for the analysis of data sets where activity information is 

available but the structure of the receptor site is unknown. It 
attempts to postulate and represent the essential features of a 
receptor site from the aligned common features of the molecules 
that bind to it.21 The aligned biologically active conformations of 
benzothiazine were used for the calculation of molecular fields. 
Molecular fields are the electrostatic, steric and hydrophobic 



Nitin P Jain et al / Int. J. Pharm. Phytopharmacol.  Res. 2013; 3 (2): 124-133 

126 

interaction energies which are used to formulate a relationship 
among electrostatic, steric and hydrophobic properties together 
with the biological activities of compounds. Descriptors were 
calculated using a sp3 carbon probe atom with a van der Waals 
radius of 1.52 Å and a charge of +1.0 with default cut-off energy 30 
kcal/mol to generate steric field, electrostatic and hydrophobic 
fields. Molecular descriptors such as steric, electrostatic and 
hydrophobic fields have been calculated using VLife MDS 3.5 
software.22 This is done by generating 3D rectangular grids around 
the molecule and calculating the interaction energy between the 
molecule and probe group placed at each grid point. Using Tripos 
force field, 23 steric, electrostatic and hydrophobic fields were 

computed at each grid point considering Gasteiger-Marsili 
charges.24 A value of 1.0 was assigned to the distance-dependent 
dielectric constant. A total of 3568 three dimensional descriptors 
were produced before development of model using VLife MDS 
software. Prior to model development descriptors having zero 
values or same values were removed which resulted in more than 
total 2000 descriptors. These included electrostatic, steric and 
hydrophobic field descriptors for all the compounds in separate 
columns (Table 2). These interaction energy values at the grid point 
are considered for relationship generation using MLR method. 
 

 
Table 2: List of descriptors with value to be used in the most significant 3DQSAR models of Benzothiazine derivatives 

 
Compounds S_205 S_567 S_609 S_667 E_689 E_690 S_392 S_559 

BTA-4 -0.35298 -0.63683 -0.12519 1 -1 -0.5337 -0.2927 -0.03081 
BTA-8 -0.36559 0.478404 0.695717 1 0.307654 -0.19861 -0.30063 -0.02585 
BTA-5 -0.18426 1 -0.11433 1 1 0.67811 -0.29455 -0.0367 
BTA-47 -0.34717 0.403819 -0.46246 1 -1 -0.95078 -0.27772 -0.04433 
BTA-20 -0.34467 -0.39056 -0.50744 1 -1 -0.76849 -0.27076 -0.03981 
BTA-43 -0.20481 1 -0.12244 1 -0.48258 -0.37265 -0.26762 -0.02365 
BTA-64 -0.36939 1 -0.04709 1 -0.13266 -0.17063 -0.29427 -0.02041 
BTA-35 -0.26238 -0.31211 -0.29959 1 -0.6783 -0.33686 -0.2966 -0.03793 
BTA-25 -0.27182 1 -0.17864 1 0.142447 0.065206 -0.29749 -0.13426 
BTA-66 -0.36578 1 -0.22365 1 0.126349 -0.17004 -0.27373 -0.16198 
BTA-69 -0.26118 1 -0.29305 1 0.431529 0.162868 -0.27585 -0.03962 
BTA-63 -0.34785 -0.47086 -0.21513 0.32790 0.418243 0.138998 -0.28015 -0.01934 
BTA-57 -0.26675 1 -0.30809 1 -0.23546 -0.42448 -0.28086 -0.04422 
BTA-58 -0.34261 1 -0.2321 1 -1 -0.97894 -0.26902 -0.05935 
BTA-56 -0.33695 1 -0.49656 1 -1 -1 -0.27152 -0.05338 
BTA-65 -0.35364 1 -0.16446 1 1 0.489838 -0.28282 -0.17103 
BTA-59 -0.23437 1 -0.58386 1 0.308508 -0.04946 -0.30187 -0.06424 
BTA-60 -0.27211 0.790469 -0.2963 1 0.76837 0.29139 -0.27802 -0.032 
BTA-61 -0.27211 0.790469 -0.2963 1 0.76837 0.29139 -0.27802 -0.032 
BTA-67 -0.36787 0.097327 -0.43245 1 1 0.574755 -0.27431 -0.04302 
BTA-68 -0.34855 1 -0.43509 1 1 0.562876 -0.27952 -0.24051 
BTA-24 -0.19407 1 -0.13141 1 -0.33191 -0.12154 -0.26668 -0.29965 
BTA-70 -0.36651 -0.51723 -0.38615 0.79080 0.54004 0.045596 -0.27515 -0.03183 

 
Table 2: (continued) 

 
Compounds E_316 S_71 S_462 S_857 E_396 E_476 E_658 S_94 

BTA-4 0.905829 -0.00657 -0.02457 -0.25221 1 1 1 -0.01343 
BTA-8 -0.92718 -0.0067 -0.0248 -0.17153 1 1 -1 -0.01343 
BTA-5 1 -0.00626 -0.02646 -0.1557 1 1 -0.68976 -0.01372 
BTA-47 1 -0.00669 -0.02415 -0.52046 1 1 -1 -0.01367 
BTA-20 1 -0.00664 -0.02415 -0.40783 1 1 0.522089 -0.0137 
BTA-43 -0.05443 -0.00669 -0.02377 -0.15035 1 0.584955 -1 -0.01364 
BTA-64 -1 -0.00646 -0.0249 -0.06126 1 1 0.881817 -0.01319 
BTA-35 -1 -0.00644 -0.02508 1 -1 1 -0.04748 -0.01376 
BTA-25 -0.82643 -0.00648 -0.02586 -0.46879 1 1 1 -0.01399 
BTA-66 1 -0.00644 -0.02546 -0.45333 1 1 1 -0.01379 
BTA-69 0.164879 -0.00671 -0.02404 -0.45486 1 -1 -0.30331 -0.01378 
BTA-63 1 -0.00663 -0.02363 -0.06014 1 1 -0.37695 -0.01344 
BTA-57 -0.51223 -0.00668 -0.02408 -0.51556 1 -0.7359 -1 -0.01381 
BTA-58 1 -0.00659 -0.02448 -0.43973 1 1 1 -0.01376 
BTA-56 1 -0.00664 -0.02425 -0.60408 1 -0.79829 -0.06796 -0.01388 
BTA-65 -1 -0.00658 -0.0258 -0.37265 1 1 1 -0.01384 
BTA-59 -1 -0.00646 -0.02497 -0.26644 1 1 1 -0.01389 
BTA-60 -0.03292 -0.00669 -0.02432 -0.44869 1 -0.6731 -0.31359 -0.01374 
BTA-61 -0.03292 -0.00669 -0.02432 -0.44869 1 -0.6731 -0.31359 -0.01374 
BTA-67 1 -0.0064 -0.02534 -0.34585 1 1 0.176547 -0.01366 
BTA-68 1 -0.00667 -0.0245 -0.36698 1 1 -1 -0.01386 
BTA-24 1 -0.00652 -0.02421 -0.39849 1 1 1 -0.01381 
BTA-70 1 -0.00647 -0.02467 -0.09903 1 1 -0.09289 -0.01358 

 
 

2.2.1.3 Division of a Dataset into Training and Test Sets 
 
The random selection method was adopted for division of training 
and test data sets in order to assess the similarity of the distribution 
pattern of the compounds in the generated sets, statistical 
parameters (with respect to the biological activity) i.e. mean, 
maximum, minimum and standard deviation were calculated for the 
training and test sets. For selection of training and test sets, we 
were ensured that the compounds have uniform spread (training 
and test) in terms of both activity and chemical space. Random 
selection method resulted in the selection of 5 compounds as the 
test set for validating the quality of the models and the remaining 18 

compounds as the training set for generating 3D-QSAR models 
(Table.3). The test was used to ascertain the predictive power of 
the model. 
 
2.2.1.4 Forward Stepwise as Feature (variable) Selection Method 
 
Chance correlations and multi-collinearity are two major problems 
often encountered when attempting to find generalized QSAR 
models for use in drug design. Feature selection is a key step in 
QSAR analysis. An integral aspect of any model building exercise 
is the selection of an appropriate set of features with low complexity 
and good predictive accuracy. This process forms the basis of a 
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technique known as feature selection or variable selection. Among 
several search algorithms, stepwise (SW), genetic algorithm (GA) 
and simulated annealing (SA) based feature selection procedures 
are most popular for building QSAR models and can explain the 
situation more effectively.25 In SW forward variable selection 
algorithm, the search procedure begins with developing a trial 
model step by step with a single independent variable and to each 
step, independent variables are added one at a time, examining the 
fit of the model by using the MLR procedure. Thus, the model is 
repeatedly altered from the previous one by adding or removing a 
predictor variable in accordance with the ‘stepping criteria’ (in this 
case, F= 4 for inclusion for the forward selection method). The 
method continues until there is no more significant variable 
remaining outside the model. In the selected equations, the cross-
correlation limit was set at 0.5, the number of variables at 4 and the 
term selection criteria at r2. An F value was specified to evaluate 
the significance of a variable. The variance cut-off was set at 0.0, 
and scaling as none.  
 

Table 3: Data set for 3DQSAR models 
 

Compounds Model I Model II Model II Model IV 
BTA-4 Training Training Training Training 
BTA-8 Test Test Test Test 
BTA-5 Training Training Training Training 
BTA-47 Test Training Test Test 
BTA-20 Training Training Training Training 
BTA-43 Test Training Test Test 
BTA-64 Training Training Training Training 
BTA-35 Training Training Training Training 
BTA-25 Training Training Training Training 
BTA-66 Test Training Test Test 
BTA-69 Test Test Test Test 
BTA-63 Training Training Training Training 
BTA-57 Training Test Training Training 
BTA-58 Training Training Training Training 
BTA-56 Training Training Training Training 
BTA-65 Training Test Training Training 
BTA-59 Training Training Training Training 
BTA-60 Training Training Training Training 
BTA-61 Training Test Training Training 
BTA-67 Training Training Training Training 
BTA-68 Training Training Training Training 
BTA-24 Training Training Training Training 
BTA-70 Training Training Training Training 

 
2.2.2 MLR Methodology for Building QSAR Models 
 
2.2.2.1 Model Validation and Evaluation 
 
This is done to test the internal stability and predictive ability of the 
QSAR models. 
 
2.2.2.2 Internal and External validations 
 
 Internal validation was carried out using leave-one-out (q2, LOO) 
method. For calculating q2, each molecule in the training set was 
eliminated once and the activity of the eliminated molecule was 
predicted by using the model developed by the remaining 
molecules. The cross-validated coefficient, q2, was calculated using 
Eq. (1).                 

                                  

                         
Where yi and yi are the actual and the predicted activity of the ith 
molecule in the training set, respectively, and ymean is the average 
activity of all molecules in the training set. However, a high q2 value 
does not necessarily give a suitable representation of the real 
predictive power of the model for antifungal activity. So, an external 
validation is also carried out in this study. The external predictive 
power of the model is assessed by predicting pMIC value of five 
test set molecules, which are not included in the QSAR model 
development. The predictive ability of the selected model is also 
confirmed by pred_r2. For external validation, the activity of each 
molecule in the test set was predicted using the model developed 

by the training set. The pred_r2 value is calculated as follows (Eq. 
2) 

 
                        
Where yi and yi are the actual and the predicted activity of the ith 
molecule in the test set, respectively, and ymean is the average 
activity of all molecules in the training set. Both summations are 
over all molecules in the test set. Thus the pred_r2 value is 
indicative of the predictive power of the current MLR model based 
on the external test set.  
 
2.2.2.3 Evaluation of the Quantitative Model 
  
The developed 3D-QSAR model was evaluated using the following 
statistical measures: N, number of observations (molecules) in the 
training set; q2, cross-validated r2 (by leave one out) which is a 
relative measure of quality of fit; pred_r2, r2 for external test set; 
q2se, standard error of cross-validation and pred_r2se, standard 
error of external test set prediction. However, a QSAR model is 
considered to be predictive, if the following conditions are satisfied: 
q2 > 0.6 and pred_r2 >0.5.26 The low standard error of pred_r2se and 
q2se shows absolute quality of fitness of the model. The high 
pred_r2 and low pred_r2se show high predictive ability of the model. 
The q2 and pred_r2 values were used as deciding factors in 
selecting the optimal models. 
 
3. RESULTS AND DISCUSSION 
The biological data of 1,4-benzothiazine derivatives for 3DQSAR 
studies was taken from literature. The importance and utility of the 
new 3D QSAR method discussed has been established by applying 
it to known sets of molecules as mention in table no. 4. The 
biological activity consider as dependent variable and all the 
calculated descriptors were considered as independent variable. In 
3D QSAR analysis, significant methods MLR analysis, were applied 
to generate four models: Models I, II, III and IV, respectively, from 
these models, one of them were having good q2 and pred_r2 
values, one of which was selected having good internal and 
external predictivity. Selecting training and test set was by random 
selection method. The QSAR models developed by MLR include 
both the electrostatic, steric and hydrophobic descriptors along with 
their range to indicate their importance for interaction in molecular 
field. Models IV 3D QSAR was good model amongs the all model. 
QSAR investigations of the substituted benzothiazine derivatives 
resulted in several QSAR equations. Some statistically significant 
3D QSAR models were chosen for discussion. 
 
3.1 Model I (Activity against C. albicans) 
 
pMIC = -0.1647(±0.0054)S_567 + 0.1814(±0.0251)S_690 + 
0.4733(±0.1303)S_205 + 0.1575(±0.0535)S_667 + 0.7435 
 
Statistics 
 
n = 18, Degree of freedom = 13, r2 = 0.9172, q2 = 0.8223, F test = 
36.0169, r2 se = 0.0327, q2 se = 0.0479, pred_r2 = 0.5960, 
pred_r2se = 0.4931 
The descriptors that get selected in a given model are the field 
points of steric nature at particular locations in a common grid 
around reported set of molecules. The model selection criterion is 
the value of q2, the internal predictive ability of the model, and that 
of pred_r2, the ability of the model to predict the activity of external 
test set. As the cross-validated correlation coefficient (q2) is used to 
measure the reliability of prediction, the correlation coefficient 
suggests that our model is reliable and accurate. The descriptors 
S_567, S_690, S_205 and S_667 are the steric field energy of 
interactions between probe (CH3) and compounds at their 
corresponding spatial grid points 567, 690, 205 and 667. Only the 
steric field is contributed, the contribution chart of selected 
descriptors were represented in Fig. 5. It is evident that the 
predicted activities of all the compounds in the test set are in good 
agreement with their corresponding experimental activities and 
optimal fit is obtained (Fig no. 4). The contribution plot of steric field 
interactions indicates relative regions of the local fields (steric) 
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around the aligned molecules, leading to activity variation in the 
model. The green-colored balls (fig no.6) specify the positions of 
the steric descriptors and the descriptors with positive or negative 
coefficients show a region where bulky substituent is favored or 
disfavored, respectively. From 3D-QSAR model it is observed that 
steric descriptors like S_690, S_205 and S_667 with positive 
coefficient signifying positive range of steric descriptors indicate 

that positive steric potential is favorable for activity and bulky 
substituent is favorable in that region. The robustness of the QSAR 
model for experimental training sets was examined by comparing 
this model to those derived for sphere exclusion dataset. 
 
 
 

 
Table 4: Structures of 1, 4-Benzothiazine derivatives used for QSAR analysis. 

N
H

S

O
O

H
N R1

 
Compounds R1 Compounds R1 

BTA-4 -CH3 BTA-57 

CH3

 

BTA-8 -C(CH3)3 BTA-58 

CH3

 

BTA-5 -CH2CH3 BTA-56 CH3

 

BTA-47 -CH2CH2CH2CH3 BTA-65 

C2H5  

BTA-20 -CH2CH2OH BTA-59 

Cl  

BTA-43 OH
 

BTA-60 

Cl

 

BTA-64 

HO  

BTA-61 Cl
 

BTA-35 
OH

Cl

 

BTA-67 

OMe  

BTA-25 -CH(CH3)CH2OH BTA-68 OMe
 

BTA-66 

CH3 NO2  

BTA-24 

 

BTA-69 

NO2

 

BTA-70 

 

BTA-63 NO2
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The correlation matrix between the physico-chemical parameters and the biological activity is presented in Table 5 which shows good 
correlation of selected parameters with biological activity. The above model is validated by predicting the biological activities of the test 
molecules, as indicated in Table 6. 
  

Table 5: Correlation matrix between physico-chemical descriptors present in 3D-QSAR model I 
 

 S_205 S_567 S_609 S_667 5:Score 

S_205 1.000000 0.269919 -0.124835 0.137081 4 

S_567 0.269919 1.000000 0.013542 0.416815 4 

S-609 -0.124835 0.013542 1.000000 -0.023751 4 

S_667 0.137081 0.416815 -0.023751 1.000000 4 

 
 

Table 6: Observed and predicted activity by 3DQSAR equations along with the residuals 
 

Compound For model I (3DQSAR) C. albicans  For model II (3DQSAR) E. Floccusom 
observed predicted residuals observed predicted residuals 

BTA20 0.8192 0.816 0.0032 0.8192 0.8077 0.0115 
BTA24 0.782 0.7753 0.0067 0.782 0.7596 0.0224 
BTA25 0.6543 0.6283 0.026 0.5467 0.5393 0.0074 
BTA35 0.6103 0.5862 0.0241 0.6103 0.6718 -0.0615 
BTA43 1.009 0.7101 0.2989 0.7735 0.692 0.0815 
BTA47 0.8065 0.6171 0.1894 0.8065 0.8071 -0.0006 
BTA4 0.5647 0.5529 0.0118 0.6804 0.6876 -0.0072 
BTA56 0.775 0.7738 0.0012 0.7752 0.773 0.0022 
BTA57 0.5285 0.5752 -0.0467 0.5285 0.5841 -0.0556 
BTA58 0.5285 0.5226 0.0059 0.5285 0.5442 -0.0157 
BTA59 0.618 0.5595 0.0585 0.618 0.6058 0.0122 
BTA5 0.669 0.669 0 0.669 0.7359 -0.0669 
BTA60 0.5211 0.5541 -0.033 0.5211 0.5151 0.006 
BTA61 0.5211 0.532 -0.0109 0.7593 0.7613 -0.002 
BTA63 0.5173 0.4867 0.0306 0.6127 0.5628 0.0499 
BTA64 0.5277 0.5391 -0.0114 0.5277 0.5785 -0.0508 
BTA65 0.5232 0.5194 0.0038 0.5232 0.5241 -0.0009 
BTA66 0.5127 0.5882 -0.0755 0.5127 0.543 -0.0303 
BTA67 0.5225 0.5882 -0.0657 0.5225 0.5188 0.0037 
BTA68 0.62 0.6323 -0.0123 0.5225 0.543 -0.0205 
BTA69 0.6127 0.4924 0.1203 0.6127 0.6507 -0.038 
BTA70 0.6285 0.6206 0.0079 0.6285 0.5748 0.0537 
BTA8 0.6489 0.7096 -0.0607 0.6489 0.5911 0.0578 

 
Table 6: (continued) 

 
Compound For model III (3DQSAR) T. rubrum For model IV (3DQSAR) M. furfur 

observed predicted residuals observed predicted residuals 
BTA20 0.6571 0.6618 -0.0047 0.6571 0.6271 0.03 
BTA24 0.782 0.7826 -0.0006 0.782 0.7629 0.0191 
BTA25 0.8148 0.835 -0.0202 0.6543 0.6823 -0.028 
BTA35 0.6103 0.5785 0.0318 0.7477 0.7124 0.0353 
BTA43 0.6274 0.6183 0.0091 0.6274 0.6038 0.0236 
BTA47 0.8065 0.689 0.1175 0.6489 0.7 -0.0511 
BTA4 0.5647 0.6219 -0.0572 0.6804 0.6834 -0.003 
BTA56 1.0118 0.9749 0.0369 0.0118 0.0118 0 
BTA57 0.6285 0.6046 0.0239 0.5285 0.5132 0.0153 
BTA58 0.6285 0.6007 0.0278 0.6285 0.554 0.0745 
BTA59 0.5211 0.5674 -0.0463 0.5211 0.555 -0.0339 
BTA5 0.669 0.627 0.042 0.669 0.7173 -0.0483 
BTA60 0.618 0.5641 0.0539 0.618 0.6087 0.0093 
BTA61 0.5211 0.5191 0.002 0.5211 0.5597 -0.0386 
BTA63 0.5173 0.4856 0.0317 0.5173 0.5273 -0.01 
BTA64 0.5277 0.5105 0.0172 0.5232 0.5343 -0.0111 
BTA65 0.5232 0.5423 -0.0191 0.5232 0.5343 -0.0111 
BTA66 0.6062 0.6007 0.0055 0.5127 0.5783 -0.0656 
BTA67 0.62 0.6007 0.0193 0.62 0.6359 -0.0159 
BTA68 0.62 0.6247 -0.0047 0.62 0.5783 0.0417 
BTA69 0.6127 0.6372 -0.0245 0.5173 0.6746 -0.1573 
BTA70 0.5285 0.5605 -0.032 0.5285 0.5491 -0.0206 
BTA8 0.6489 0.7094 -0.0605 0.5429 0.6695 -0.1266 
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Fig. 3: Fitness plot between observed activity Vs predicated activity 

for model I 
 

 
 

Fig. 4: Contribution charts of the descriptors for model I 
 

 
 

Fig. 5: 3D view of aligned molecule with contribution of descriptors 
(model I) 

 
3.2 Model II-3D QSAR (E. floccosum) 
 
pMIC = -0.3738(±0.0014)E_689 + 0.2266(±0.0010)S_599 + 
0.3842(±0.0028)E_690 + 3.8137(±0.8468)S_392 + 1.8653  
 
Statistics 
n = 18, Degree of freedom = 13, r2 = 0.9169, q2 = 0.7577, F test = 
35.8477, r2 se = 0.0379, q2 se = 0.0648, pred_r2 = 0.5861, 
pred_r2se = 0.4475 
Model II are resulted from the antifungal activity against E. 
floccosum. Model II with coefficient of determination r2= 0.9169 
which is capable of explaining 91.69% of variance in the observed 
activity values. As the cross-validated correlation coefficient (q2) is 
used as a measure of reliability of prediction, the correlation 
coefficient suggests that our model is reliable and accurate. S_599 
and S_392 are steric descriptors contribute to model II (Fig.8). A 
data set of compounds containing five molecules was selected as 

the test set from the original data of 23 compounds for the 
validation experiments. The q2 value obtained (0.7577) was a 
significant value of current MLR model. Predictive power of the 
model is 58.61% (external validation). The correlation matrix 
between the physico-chemical parameters and the biological 
activity is presented in Table 7. Forward method of variable 
selection indicating its crucial role in predicting antifungal activtity 
and signifying positive range of steric descriptors indicate that 
positive steric potential is favorable for activity and bulky substituent 
is preferred in that region. The steric effect, as shown with green 
color (Fig.9) around the phenyl ring at para position, implies about 
the preferred bulky group substitution to produce higher antifungal 
activity. Electrostatic descriptor with positive coefficient (E_690) 
around para position of the phenyl ring corroborates that 
electropositive (electron-withdrawing) group is preferred at 4-
position of phenyl ring. The good correlation find between plot 
observed Vs predicted activity show in fig.7.The above model is 
validated by predicting the biological activities of the test molecules, 
as indicated in Table 6. 

 

 
 

Fig. 7: Fitness plot between observed activity Vs predicated activity 
for model II 

 

 
 

Fig. 8: Contribution charts of the descriptors for model II 
 

 
 

Fig. 9: 3D view of aligned molecule with contribution of descriptors 
(model II) 
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Table 7: Correlation matrix between physico-chemical descriptors 
present in 3D-QSAR model IIF 

 
 E_689 E_690 S_392 S_559 5:Score 

E_689 1.000000 0.963702 -0.201895 -0.378061 4 

E_690 0.963702 1.000000 -0.250761 -0.332572 4 

S_392 -0.201895 -0.250761 1.000000 -0.154724 4 

S_559 -0.378061 -0.332572 -0.154724 1.000000 4 

 
3.3 Model III-3D QSAR (T. rubrum) 
pMIC = 0.4025(±0.0000)S_857 - 183.6630(±1.9221)S_462 -
916.5890(±57.4123)S_71 + 0.0659(±0.0000)E_316 - 9.8156  
 
Statistics 
n = 18, Degree of freedom = 13, r2 = 0.9652, q2 = 0.9129, F test = 
90.2117, r2 se = 0.0271, q2 se = 0.0429, pred_r2 = 0.5211, 
pred_r2se = 0.4045 
 
The descriptors that get selected in a given model are the field 
points of steric nature at particular locations in a common grid 
around reported set of molecules. According to this model pMIC is 
a function of independent variables and dependent variable are 
steric fields. The steric descriptor S_857 is positive are indicate that 
the bulky substituted is favorable at para position and S_462 is 
negative contribute to model are indicate that the substitution at 
ortho position is disfavorable for the activity. This model also 
indicates statistical significance > 99.9% with F values F= 90.2117. 
Cross-validated squared correlation coefficient of this model is 
q2=0.9129, which shows good internal prediction power of this 
model with good external predictivity are 52 %. The contribution of 
electrostatic fields indicates that electric field is also important 
factor for the activity, contribution chart of selected descriptors are 
represented in Fig. no. 11. The correlation matrix between the 
physico-chemical parameters and the biological activity is 
presented in Table 8. The predicted activities of all the compounds 
in the test set are in good agreement with their corresponding 
experimental activities and fitness plot is obtained shown in fig.10. 
The 3D view of contributed descriptor around the molecule is given 
fig. 12. 
 
Table 8: Correlation matrix between physico-chemical descriptors 

present in 3D-QSAR model III 
 

 E_316 S_71 S_462 S_857 5:Score 

E_316 1.000000 -0.032970 0.191469 -0.475944 4 

S_71 -0.032970 1.000000 -0.804737 0.359050 4 

S_462 0.191469 -0.804737 1.000000 -0.162765 4 

S_857 -0.475944 0.359050 -0.162765 1.000000 4 

 
 

 
Fig. 10: Fitness plot between observed activity Vs predicated 

activity for model III 
 
 

 

 
 

Fig. 11: Contribution charts of the descriptors for model III 
 

 
 

Fig. 12: 3D view of aligned molecule with contribution of 
descriptors (model III) 

 
3.4 Model IV-3D QSAR (M. furfur) 
pMIC = 0.3094(±0.0000)E_396 + 202.9650(±43.4077)S_94 -
0.0676(±0.0000)E_658 + 0.0444(±0.0000)E_476 + 3.0663  
 
Statistics 
n = 18, Degree of freedom = 13, r2 = 0.9621, q2 = 0.893, F test = 
82.5554, r2 se = 0.0362, q2 se = 0.1775, pred_r2 = 0.9286, 
pred_r2se = 0.06099 
 
In addition, this QSAR study allowed investigating influence of very 
simple and easy-to-compute descriptors in determining biological 
activities, which could shed light on the key factors that may aid in 
design of novel potent molecules. The model IV explains 96.21% 
variance in the observed activity values, r2 is 0.9621, cross-
validated correlation coefficient (q2) of 0.893, (internal predectivity), 
F test of 82.5554 indicate overall 99.99% significance, r2 for 
external test set (pred_r2) 0.9286, coefficient of correlation of 
predicted data set (pred_r2se) 0.06099. The presence of descriptor 
E_396  plays an important role in being directly proportional to the 
biological activity and highest contributed among the descriptor and 
E_658 is the electrostatic descriptor are positive coefficient indicate 
requirement of electropositive group that  leads to better antifungal 
agent. The plots of observed vs. predicted values of pMIC and 
contribution chart are shown in Fig. no. 13 and 14 respectively. The 
predicted (LOO) activities of the compounds by the above model 
are shown in Table 6. The correlation matrix between the physico-
chemical parameters and the biological activity is presented in 
Table 9. 
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Table 9: Correlation matrix between physico-chemical descriptors 
present in 3D-QSAR model IV 

 
 E_396 E_476 E_658 S_94 5:Score 

E_396 1.000000 -0.116941 0.028376 0.108910 4 

E_476 -0.116941 1.000000 0.202878 0.298401 4 

E_658 0.028376 0.202878 1.000000 0.002876 4 

S_94 0.108910 0.298401 0.002876 1.000000 4 

 

 
Fig. 13: Fitness plot between observed activity Vs predicated 

activity of training and test set compound for model IV 
 

 
 

Fig. 14: Contribution charts of the descriptors for model IV 
 

 
 

Fig. 15: 3D view of aligned molecule with contribution of 
descriptors (model IV) 

 
 

4. CONCLUSION 
3D QSAR models were statistically significant, thus from 3DQSAR 
investigations it could be concluded that steric properties of 1,4-
Benzothiazine derivatives contribute significantly to the antifungal 
activity and need of bulky substitution at para or meta position of 
phenyl ring. The generated models were analyzed and validated for 
their statistical significance and external prediction power.  
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