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1. INTRODUCTION 
Diabetes mellitus is a disorder of carbohydrate, fat and 
protein metabolism, which is characterized by absolute or 
relative lack of insulin, resulting in hyperglycemia1. It is mainly of 
two types: type 1 diabetes mellitus and type 2 diabetes mellitus. 
Long term diabetes mellitus leads to a variety of complications such 
as cardiovascular disease2, retinopathy3, nephropathy

 
and 

neuropathy4. This disease remains to be an expanding global 
health crisis, because it is a potentially morbid condition with high 
prevalence worldwide thus it constitutes a major health concern5. 
World health organisation (WHO) estimates that by 2030 there 
will be 333 million diabetics in the world, about 50.8 million in 
India6, 11 million in Brazil7, and 26 million people in U.S 
population8. Due to its high prevalence and potential deleterious 
effect on a patient’s physical and psychological state, diabetes is 
a major medical concern9 which, remains incurable and can 
only be controlled with drugs. Therefore, over the years, several 
animal models have been developed for evaluating the anti-
diabetic activity of various agents. These models include 
chemical, surgical and genetic manipulations in several animal 
species10. The main drugs used for diabetes mellitus are oral 
hypoglycemic drugs (Sulphonylureas,  Biguanides) but use of these 
drugs leads to serious side effects like hypoglycaemic shock, lactic 
acidosis etc11. Moreover, the cost of these drugs is also high. 
Therefore, there is need for better and safer drugs to prevent 
diabetes in early stages. Herbal products are our national 
heritage. The uses of herbal remedies are increased many folds 
from 1990 onwards in USA12 and other countries. Therefore, the 
present review is aimed to summarise the different animal 
models for diabetic mellitus and the plants reported to possess 
antidiabetic activity. 

 

1.1 Pathogenesis of Diabetes Mellitus 
Insulin is a principle hormone that regulates uptake of glucose 
from the blood into most of the cells and its deficiency leads to 
type 2 diabetes mellitus13. In type 1 diabetes there is autoimmune 
destruction of β-cells which is triggered by the factors such as 
environmental and viral factors14.

 
In type 2 diabetes β- cells 

destruction leads to decrease in insulin release and resistance to 
insulin develops due to obesity15. Adipose tissues are located 
throughout the body, some of these depots are structural, 
providing mechanical support and contributing little to energy 
homeostasis. As the adipose tissue plays an important role in 
buffering the flux of free fatty acid (FFA) in postprandial period. In 
obesity there is abnormal production of free fatty acid release due 
to increased production of inflammation related protein (IRP) in 
adipose tissue16. Thus increased level of FFA and glucose (due to 
high glucose diet e.g. excessive carbohydrate diet) causes 
production of mitochondrial reactive oxygen species (ROS). These 
maladaptive responses, results in oxidative stress and ultimately 
macro vascular / micro vascular damage17. Indirectly 
mitochondrial ROS produces oxidative stress which functions as a 
signalling molecule to activate stress sensitive pathways such as 
nuclear factor B (NF-кB), janus kinases/ stress activated 
protein kinases (JNK/SAPK), and hexosamines. These stress 
sensitive pathway increases production of sorbital, advance 
glycated end product (AGE), cytokines and prostanoids along 
with diacyl glycerol (DAG) which collectively results in insulin 
resistance and β-cell dysfunctioning18. Insulin resistance results in 
metabolic impairment of glucose in skeletal muscle (also indirectly 
involved in hepatocyte damage) and liver. Due to resistance of 
insulin towards glucose, metabolic impairment takes place which 
leads to glucose intolerance and hepatocyte destruction. Hepatic 
factors like alcohol, hepatitis C virus (HCV), hepatocellular 
carcinoma (HCC) also responsible for hepatic destruction19 Due to 
hepatocyte destruction, there is increase in level of glucagon, 
growth hormone, free fatty acid and cytokines which collectively 
results in hyperinsulinemia. All above mentioned factors which 
are indirectly involved in resistance of insulin leads to decreased 
level of insulin in response to glucose, hence there is 
dysfunctioning in β-cells of islets in pancreas in finally results in 
diabetes mellitus20. Beyond above mention factors there are 
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some non- hepatic factors like genetic21, environmental and viral factors that are directly involved in the diabetes mellitus22. 
 

Fig.1: Pathogenesis of diabetes. 
 

 
 

IRP = Inflammation related protein, ROS = Reactive oxygen species, GAPDH= Glyceraldehyde-3-phosphate dehyrogenase, NF-кB = Nuclear factor кB, 
JNK/SAPK = Janus kinases/ stress activated protein kinases, IGF-1 = Insulin growth factors, HCV = Hepatitis C virus, HCC= Hepatocellular carcinoma. 

 
2. EXPERIMENTAL ANIMAL MODELS OF DIABETES MELLITUS 
Experimental diabetes mellitus is generally induced in laboratory 
animals by several methods that include: chemical, surgical and 
genetic (immunological) manipulations. Most of the preliminary 
experiments in diabetes are carried out in rodents, although some 
are still performed in larger animals. 
The animal models employed for screening anti-diabetic agents 
can be broadly classified into three types and are enlisted 
below23. 
1) Methods to induce experimental diabetes mellitus 

(a) Alloxan 
(b) Streptozotocin 
(c) Hormones 
(d) Viruses induced 
(e) Other diabetogenic compounds 

(i) Dithizone 
(ii) Monosodium glutamate 

2) Genetically diabetic animals 
(a) Spontaneous diabetic rats 
(b) Spontaneous diabetic mice 
(c) Other species with inherited diabetic symptoms 

3) Miscellaneous models 
(a) Invertebrate animal model 
(b) Diet induced metabolic dysregulation 

 
2.1 Methods to Induce Experimental Diabetes Mellitus 
 
2.1.1 Alloxan Induced Diabetes 
Alloxan(2,4,5,6-tetraoxypyrimidine; 5, 6-dioxyuracil) is hydrophilic, 
unstable substance having half life about 1.5 min (at temp 37º 
C) and is longer at lower temperatures24 but when a diabetogenic 
dose is used, the time of alloxan decomposition is sufficient 
to allow it to reach the pancreas in amounts that are 
deleterious. Due to selective toxic action of alloxan on β-cells as 
well as on non β-cells, other non endocrine islets along with 
extrapancreatic parenchyma, its dose selection should be done 
precautionally25. 
 
2.1.2 Streptozotocin Induced Diabetes 
STZ (2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose) is 
cytotoxic especially to β-cells of the pancreas. It is synthesized 
by Streptomycetes achromogenes (species of gram positive 
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bacteria that belongs to genus Streptomycetes) and is used to 
induce both type 1 diabetes and type 2 diabetes at dose of 
50mg/kg i.p for 3 days26  

and 80-100mg/kg (i.v, i.p or s.c) in 
neonatal rats for 10days24. STZ can also be used in higher 
animals to induce diabetes given in table-1. 
 

Table - 1: Streptozotocin induced diabetes mellitus in different 
experimental animal species 

 
Species Streptozotocin Route 

Mice 50-200mg/kg i.v. or i.p
24

 
Rat 45-65mg/kg i.v. or i.p

27

 
Hamster 50mg/kg i.v. or i.p

28

 
Dog 20-30mg/kg i.v. or i.p

29,30

 
Pig 100-150mg/kg i.v. or i.p

31

 
Primates 50-150mg/kg i.v. or i.p

32

 
 

 
 

2.1.2.1 Mechanism of Action of Streptozotocin Induced diabetes 
It is hypothesized that mechanism of streptozotocin is mediated 
through the reduction of nicotinamide adenine dinucleotide 
(NAD) in pancreatic cell. Streptozotocin taken up by pancreatic 
β-cells via glucose transporter (GLUT2) which prevents the 
glucose metabolism in cell and results in reduction or inhibition of 
the insulin release33, 34. This leads to generation of reactive 
oxygen species like methyl radicals (CH3), oxygen radicals 
(O2), hydrogen peroxide (H2O2) and hydroxyl radicals (OH) 
that results in DNA damage35 which is repaired by an excision 
process. DNA repair requires activation of NAD dependent 
enzyme poly (ADP-ribose) synthetase by activation of PARP 
enzyme. But in STZ, this excision repair process get prevented 
and results in critical loss of NAD leads to cessation of cellular 
function by depletion of ATP, eventually β-cell death takes 
place.DNA alkylation process directly results in NAD depletion 
which leads to β-cell damage27 
 

 
. 

Figure 2: Mechanism of action of Streptozotocin (STZ) 

 
GLUT2= glucose transporter, G=   extracellular glucose, Ga= Glucose receptor activated, I = insulin,  OH

ο
= hydroxyl radical,  CH3 = methyl radical, O2 = 

oxygen radical, H2O2= hydrogen peroxide, DNA= deoxyribonucleic acid, PARP = Poly (ADP-ribose) polymerase, NAD=nicotinamide adenine dinucleotide, 
ATP=adenosine triphosphate, = inhibition. 

 
2.1.2.2 Histological Studies of Pancreas in STZ Induced Diabetes 
In control group there is a normal lobular architecture of 
pancreas, having abundant islets of langerhans interspersed 
among the pancreatic exocrine acini, islets appeared lightly 
stained than the surrounding acinar cells, with intact interlobular 
connective tissue and interlobular duct (Figure No.3). But in 
STZ induced diabetic group (Figure No. 4) at 75mg/kg i.p single 
injection, pancreas shows marked morphological changes after 30 
days of induction. The border between endocrine and exocrine 

region became indistinct. The inflammatory cells surround the 
ducts, in between the acini and inside the lumen of blood 
vessel. (Figure No. 5) shows blood vessels contracts and dilates 
which results in either completely destroyed islets leaving   empty   
space   which   filled   with   amyloid   like   material   or   nuclear   
pyknosis   and   nuclear fragmentation36. 
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2.1.3 Hormone Induced Diabetes 
A number of hormones (e.g. growth hormone, corticosteroids, 
and thyroxine) modify insulin release in response to glucose. 
Endocrine pancreas consists of about 1 million microscopic clusters 
of cells, the islet of langerhans cells, which contains four major cell 
types i.e β, α, δ and PP (pancreatic polypeptide) cells. The β-cell 
produces insulin, which is best potent anabolic hormone, with 
multiple synthetic and growth promoting effects, the α-cell 
secrete glucagon, inducing hyperglycemia by its glycogenolytic 
activity in liver37, the δ-cell secrete somatostatins, which 
suppress both insulin and glucagon release and PP cells 
secrete a unique pancreatic polypeptide that exerts several effects 
like inhibition of gall bladder contraction and pancreatic enzyme 
secretion. 

 
2.1.3.1 Role of corticosteroids in diabetes mellitus 
Steroids possessing both impaired glucose transport in fat and 
muscle cells, as well as have ability to reduce glucose clearance, 
which causes a harmful effect on β- cells of the pancreas islet by 
inducing apoptosis38. 
In dexamethasone, the glucose transporter (GLUT1) protein 
expression level was decreased, which possibly caused decreased 
basal glucose uptake and results in insulin resistance. This leads to 
decreased muscle blood flow, impaired cellular glucose transport, 
or intracellular deficits of glucose metabolism38. At massive dose it 
produces diabetes only in <20% of wistar rats while in zucker (fa/fa) 
female rat there is 100% induction of diabetes. Moreover, insulin 
resistance induced by dexamethasone alone is not sufficient to 
cause diabetes in wistar rats as in spontaneous NIDDM (non insulin 
dependent diabetes mellitus) 40. 
 
 
 

 
 
2.1.3.2 Role of growth hormone in diabetes mellitus 
The insulin and growth hormone (GH) or insulin like growth factor -I  
(IGF-I) axis are two endocrine system that are interlinked at many 
levels and GH is one of glucose counter regulatory hormone. 
Therefore, rising in level of GH lead to insulin resistance and 
hyperglycemia41 

 
2.1.3.3 Role of Thyroid hormone (T3) in diabetes mellitus 
Thyroid hormones are widely known for their ability to influence 
various cellular processes such as mitogenisis and 
differentiation, which are considered good target for counteracting 
the diabetes mellitus42. Preventive role of T3 is shown by activation 
of phosphatidylinositol-3-kinase (PI3k)  and Akt or protein kinase B 
pathway which activate  growth factors to stimulate cell growth. This 
results in β-cell proliferation and survival43,44. 
 
 
 
 
 
 
 
 
 
 

 
Fig.6: Preventive role of T3 in Diabetes mellitus 

 
2.1.4 Viruses Induced Diabetes 
Viruses are agents that have been thought to be implicated 
in pathogenesis of Juvenile onset diabetes mellitus and 

Fig.3: A Photomicrograph of rat pancreatic tissue of the control group
showing normal lobular architecture. Islets of Langerhans (black
arrows) seen surrounded by the pancreaticacini (PA). Notice the
Interlobular connective tissue (CT) and the interlobular duct (D). 

Fig. 4: A photomicrograph of rat pancreatic tissue of the diabetic
group showing inflammatory cells (blue circle) surrounding duct (D)
and between acini (A). 

Fig.5: A photomicrograph of rat pancreatic tissue of the diabetic 
group showing inflammatory cells (blue circle) surrounding duct (D) 
and between acini (A). 

T3 activates PI3k/Akt pathway 
 
 

Activation of Growth factors stimulates cell growth 
 
 

β-cell proliferation and survival 
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involved in either direct (infection) destruction of β-cells45 or by initiation of an autoimmune response to β-cells23. 
 

Table 2: Different viruses used to induce diabetes in different strains of mouse and their mechanisms of action are given below: 
 

Virus Strains used (mouse) Mechanism involved 

Coxsackievirus B (CBV) 

CBV-3/NANCY CBV-
4/J.P.B 

CBV-5/FAUKNER CVA-
9/GRIGGS 

Respiratory tract infection → spread throughout lymphatic circulation46 

Encephalomyocarditis 
Virus (EMC) 

SJL/L, SWR/J, DAB/1J, 
DBA/2J, BALB/C M variant of EMC virus → diabetic like syndrome→ selectively infect pancreatic cells47,48,49 

Kilham Rat Virus 
(KRV) BB-DR BBDR rats infected with KRV → up regulation of → cytokines → immune response in 

pancreatic lymph node diabetes 50 
Lymphocytic Choriomeningitis virus 

(LCMV) RIP-GP , RIP-NP Mice infected with LCMV virus → antiviral immune response → mononuclear cell infiltration into 
islet of pancreas → destruction of β-cells 51 

 
2.1.5 Insulin Antibodies Induced diabetes 
The insulin antibody interaction may be reversible and is dependent 
on the affinity and capacity of the antibody to bind insulin52 and 
several other factors such as genetic factor, insulin purity, insulin 
aggregation involved in the generation of insulin antibodies53. 
Insulin deficiency mechanism, involved as any delay in the initial 
increase of free insulin level in plasma may causes greater 
postprandial hyperglycemia because antibody-bound insulin is 
unavailable to tissues, but the prolongation of postprandial 
hyperinsulinemia may leads to late hyperglycemia due to 
antibodies54. 
 
2.1.6 Other Diabetogenic Compounds 
 
2.1.6.1 Dithizone 
Dithizone is sulphur containing organic compound (8-(p-toluene 
sulfonylamino) quinolone) a good ligand and forms complex with 
many metals such as lead and mercury55. It is used to assess the 
purity of human pancreatic islet preparation that are used for 
transplantation in type 1 diabetic subjects56. It reacts with zinc in 
islets of langerhans causing destruction of islet cells and induces 
diabetes. The mechanism of action of dithizone is based on the 
formation of an unsaturated (electrophilic) complex with zinc in 
them57. Dithizone induces similar glycemic changes in rabbits, 
golden hamster and mice (triphasic fluctuations resulting in 
diabetes) 
 

 

Initial hyperglycemia observed after 2h  
 

Normoglycemia after 8h persists for upto 24 h 
 

Hyperglycemia observed after 24-72 h, last for long period of time 
 

Diabetes 
 

Fig. 7: Triphasic fluctuations in dithizone induced diabetes 
 

2.1.6.2 Monosodium Glutamate 
Monosodium glutamate (MSG) ingestion is known to increase 
plasma glutamate concentration. MSG infusion stimulates insulin 
secretion58. Subcutaneous administration of MSG to neonatal 
female non-obese diabetic (NOD) mice resulted in obesity 
associated with stunting and hyperinsulinemia, this leads to 
maintaining β-cell function through the modification of degenerative 
process of islet in the non obese diabetic (NOD) mouse59. 
 
2.2 Genetically Diabetic Animals 
Spontaneous diabetic animals may be obtained from the animals 
with one or several genetic mutations transmitted from generation 
to generation (e.g. db/db mice) or by repeated breeding with non-
diabetic animals over several generation (BB rat, obese diabetic 
(TSOD) mouse). These animals generally inherit diabetes either as 
single or multigene defects60. The list of different strains of 
spontaneous diabetic species and their characteristic features are 
below in table- 3, 4 and 5. 

 
Table 3: Different strains of spontaneous diabetic rats prone to diabetes and their characteristic features 

Strain Onset of 
diabetes Characteristic Features 

Biobreeding 
rat (BB) 7-14 weeks 

 Associated with insulin deficiency and insulitis due to autoimmune destruction of β- cell. 
 Pancreatic islets subjected to an immune attack with T cells, B cells and macrophage recruited to insulitis. 
 Susceptibility of diabetes: Male (M) = Female (F) 
 Auto antibodies: glutamic acid decarboxylase (GAD), islet cell autoantibodies (ICA)60 

Goto Kakizaki 
rat (GK) 3- 4 weeks 

 Stable hyperglycemia in adult life span. 
 Both insulin resistance and impaired insulin secretion are present. 
 Associated with type 2 diabetes mellitus61 

Otsuka Long 
Evan Tokushima Fatty rat 

(OLETF) 
18 weeks 

 Associated with glucose intolerance62. 
 Pancreatic islets undergo 3 stages of histological changes: 

a) Cellular infiltration (16-20 week old) 
b) Hyperplasia (20-40 week) 
c) Finally islet become fibrotic and replaced by connective tissue63. 
 Susceptibility of diabetes: M> F2 

Zucker 
diabetic fatty rat (ZDF/ 

DRT-FA) 
6-11 weeks 

 Lipotoxicity to β-cells cause diabetes. 
 Used for investigation mechanism associated with insulin resistance and β- cell dysfunction in type 2 diabetes. 
 Frank  diabetes  due  to  failure  to  compensate  adequately  for  insulin resistance. 
 Susceptibility of diabetes : M > F64, 65 

Zucker fatty 
rat (ZFR) 4 weeks 

 Zucker (fa/fa) fatty or obese rat results from simple autosomal recessive (fa) gene on chromosome 5. 
 Associated with hyperinsulinemia, hyperlipidemia and hypertensive65 
 Impaired glucose tolerance 
 Used for screening different insulin sensitizing and anti obesity agents 64 

James C 
Russel-LA (JCR: LA)- 

Corpulent rat 
10 weeks 

 Associated with hypertriglyceridemia and hyperinsulinemia with impaired glucose tolerance and also susceptible 
to vascular arteriosclerotic lesion66 

 Used   as   research   model   for   development   of   atherosclerotic   and myocardial lesions in association with 
syndrome- X metabolic profile67 
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LEW.1ARI/- 
iddm 9rats 8-9 weeks 

 Autoimmune model of diabetes 
 Exhibits prediabetic period with islet infiltration in a week before animal become hyperglycemic68. 
 Animal survives after the onset of overt diabetes and can be used to study diabetic complications 69. 
 Susceptibility of diabetes: M= F24 

KDP 
(Komeda diabetes prone) 

rats 
8-16 weeks 

 In non lymphopenic substrain, frequency of diabetes is 70% and have mild to severe insulitits at 120-220 days of 
age. 

 Exhibits lymphocytic infiltration of thyroid and kidney. 
 In KDP rats, casitas B-lineage lymphoma b (Cblb) function as negative regulator of autoimmunity and a major 

susceptibility gene for type 1 diabetes in rats60. 

Cohen 
diabetic rat (CDR) 6 weeks  Genetically derived model of diet induced type 2 diabetes. 

 Sensitive group developed β- cell dysfunctioning and reduced insulin secretion with insulin resistance70 

ESS rat 8 weeks  Characterized by abnormal glucose tolerance and consists of mild type of diabetes. 
 Disruption of the islets architecture and fibrosis of stroma in six month old rats71. 

 
Table - 4: Different strains of spontaneous diabetic mice prone to diabetes and their characteristic features 
 
 

Strain Onset of 
diabetes Characteristic Features 

Non obese diabetic 
(NOD) mice 12-30 weeks 

 Insulitits at age 4-5 week old, followed by subclinical β-cell destruction72. 
 Auto antibodies : GAD, ICA 
 Susceptibility of diabetes: F> M73 

Nagoya 
Shibata Yasuda 

(NSY) mice 
48 weeks 

 Spontaneous type 2 diabetic model 
 Impaired insulin secretion. 
 Susceptibility of diabetes: M> F74 

Kuo Kondo (KK) mice 8 weeks 

 Polygenic model of obesity. 

 Characterized by hyperphagia, hyperinsulinemia, insulin resistance. 
 Increase in pancreatic insulin content associated with increase in number and size of islet. 
 Degranulation of β-cells and hypertrophy of islets of pancreas75. 

KK- 
AУ/yellow KK obese 

mice 
5 weeks 

 Blood glucose and circulating insulin level as well as hemoglobin A1c 
 (HbA1c) levels are increased from 5 week of age. 
 Degranulation and glycogen infiltration of β-cell. 
 Extrapancreatic action of antidiabetic drugs such as glimepiride 23. 

AKITA 
diabetic mice 3-4 weeks 

 Characterized by hyperglycemia, hypoinsulinemia, polyuria and polydipsia. 
 Lack of β-cell mass in this model makes it an alternative to STZ treated mice in transplantation studies. 
 Type 1 diabetes model for macrovascular and neuropathy diabetes2. 

Leptin 
defficint (Lepob/ob) 

mice 
2-4weeks 

 Model of severe obesity, derives from spontaneous mutation. 
 Characterized by increase in weight, hyperinsulinemia, hyperglycemia and hyperlipidemia. 
 Infertile 76,77 
 The pancreatic islet volume is dramatically increased in these mice but some abnormalities in insulin secretion 

although islet maintains insulin secretion and lack of complete β-cell failure shows it not completely type 2 diabetic 
model 2. 

Leptin 
receptor deficient 
(Leprdb/db) mice 

4-8weeks  Characterized by hyperphagia, obesity, hyperinsulinemia and hyperglycemic. 
 Significant development of nephropathy 66, 23. 

 
Other species which are used as diabetic model include Sand rat, Spiny mouse, African hamster and TUCO- TUCO (Ctenomis talarum). 

 
Table 5: Other species with inherited diabetic symptoms 

 
Species Characteristic Features 

Spiny mouse 
(Acomys cahirinus) 

 Nocturnal, large light brown mice that weight 30 -50g and having fur brister on their backs. 

 Diabetes occurs in about 15% of the animals and accompanied by hyperplasia of endocrine pancreas
78

. 

 Characterized by obesity, mild hyperglycemia and hyperinsulinemia 
79

. 

Sand rat 
(Psammomys obesus) 

 It is used as model of latent Insulin dependent diabetes mellitus. 
 Animal developed diabetic symptoms by chow, instead vegetable diet. 

 Diabetic symptoms develops within 2-3 months and characterized by hyperglycemia and ketosis 
80

. 
African hamaster 

(Mystromys 
albicaudatus) 

 Characterized by  hyperglycemia, glycosur ia, ketonur ia, polyur ia, polyphagia, polydipsia, pancreatic lesion and β-cell 

death 
81

. 

TUCO-TUCO 
(Ctenomis talarum) 

 They are having syndrome similar as in sand rat and spiny mouse. 
 Characterized by degranulation of β-cell usual lesion in pancreas. 

 Amyloid hyalinization of islet has been observed. 

 Less prone to hyperglycemia and ketosis but males become hyperphagic 
82

. 
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2.3 Miscellaneous Models 
 
2.3.1 Invertebrate Animal Model 
Drosophila model used for understanding metabolism83 and to 
study the genetics of metabolic function in various species. 
Drosophila fly elucidates the pathogenesis of human metabolic 
disease such as diabetes and obesity. Both diabetic and obese 
flies, as well as genetically “lean” and hypoglycemic phenotypes 
have been created as model of human disease84. Another 
invertebrate animal model is Silk Worm (Bombyx mori) used for the 
identification of antidiabetic drugs. The silk worm fed a high glucose 
diet (10% glucose containing diet) for 3 days shows increases 4 
fold in hemolymph sugar level compared with silk worm fed a 
normal diet85. 
 
2.3.2 Diet Induced Metabolic Dysregulation 
In this model male albino wistar rats are used to induce diabetes 
with high fructose diet (66 % fructose and 1.1% coconut oil) for 3 

weeks shows increase in glucose and glycosylated haemoglobin 
level86. Another model is non human primates Baboon (Papio 
hamadryas) induced with high sugar, high sugar fat diet after 12 
hour fasting. The composition of diet includes 73 % purina monkey 
chow-5038, 7% lard, 4% crisco, 4% coconut oil, 10.5% flavoured 
high fructose corn syrup and 1.5 % water. Continuous dietary 
exposure of 8 weeks increases the body fat and triglyceride 
levels87. 
 
2.3.2.1 Role of herbs in the treatment of diabetes mellitus 
Herbal plants having a potential role in treatment of diabetes as 
their active principle have been reported to possess pancreatic β- 
cell regeneration, insulin mimetic activity and also improve insulin 
resistance. Moreover, due to its cost effectiveness and less side 
effect these herbal plants are claimed preferred over conventional 
preparation. The list of different herbal plants reported to possess 
antidiabetic activity in different models are mentioned in the table 6, 
7 and 8. 

 
Table 6: Plants used in STZ induced diabetes model 

Sl. No. Plant name Common name Part used/ Type of extract Observed result 

1) Agele marmelos 
(Rutaceae) 

Holy fruit 
tree Leaf/Aqueous extract utilization of glucose88 

2) Aloe vera 
(Liliaceae) Aloe Whole plant/ 

Leaf pulp extract maintain glucose homeostasis 89 

3) Annona squamosa 
(Annonaceae) Sugar apple Leaf/ ethanolic leaf 

extract blood glucose level 90 

4) Andrographis paniculata 
(Acanthaceae) 

King of 
bitter 

Whole plant/ aqueous 
extract prevent glucose absorption 91 

5) Azadirachta indica 
(Meliaceae) Neem Leaf/aqueous extract hypoglycemic activity 92 

6) Cassia auriculata 
(leguminosae ) 

Tanner’s 
cassia 

Flower/ aqueous 
extract enhanced utilization of glucose 93 

7) Caesalpinia bonducella 
(Caesalpinoidiae) 

Chinese 
cinnamon 

Seed/aqueous and 
ethanolic extract release of insulin 94 

8) Citrullus colocynthis 
(Cucurbitaceae) Bitter apple Seed/ aqueous extract level of Aspartate aminotransferase (AST) and lactate dehydrogenase 

(LDH)and shows hypoglycemic activity 92 

9) Casearia esculenta 
(Flacourtiaceae) Carilla Root/aqueous extract blood glucose level 95 

10) Catharanthus roseus 
(Apocynaceae ) 

Madagascar 
periwinkle 

Leaf and twigs/ 
ethanolic leaf extract mobilization of glucose 96 

11) Eugenia jambolana 
(Myrtaceae) 

Indian black 
berry 

Seed powder/ 
ethanolic seed extract shows better glucose tolerance 6 

12) Morus alba 
(Moraceae) 

White 
mulberry Leaf/ aqueous extract glucose uptake 97 

13) Mangifera indica 
(Anacardiaceae) Mango Leaf/ aqueous extract glucose absorption 98 

14) Ocimum sanctum 
(Lamiaceae) Holy Basil Whole plant, leaf/ leaf 

powder extract glucose level 99 

15) Punica granatum 
(Punicaceae) Pomegranate Flower/ methanolic 

seed and flower exract blood glucose level100 

 
Table 7: Plants used in High fructose diet induced diabetes model 

 
S no. Plant name Common name Part used/Type of extract Observed result 

1) Anacardium occidentale (Anacardiaceae) Cashew plant Stems and Bark/ methanolic extract blood glucose level101 

2) Amaranthus cruentus 
(Amaranthaceae) Amarath Seeds/aqueous 

extract malondialdehyde level in plasma 102 

3) Andrographis paniculata 
(Acanthaceae) Chieretta Whole plant, Leaf and 

Stem/ethanolic extract antidiabetic andantioxidant activity103 

4) Allium sativum 
(Liliaceae) Garlic Bulbs/ 

Homogenates improve insulin sensitivity104 

5) Azadirachta indica 
(Maliaceae ) Neem Leaves/ aqueous 

extract improve glucose intolerance105 

6) Fagopyrum tataricum 
(Polygonaceae ) Buck wheat Roots /powder 

ethanolic extract glucose and triglyceride level106 

7) Ficus exasperata 
(Moraceae) Vahl Leaves aqueous 

extraction ameliorated glucose tolerance107 

8) Gymnema sylvestre 
(Asclepiadaceae) Gurmar Leaves/ aqueous 

extraction glucose and cholestrol level108 

9) Ibervillea sonorae 
(Cucurbitaceae) Wareke Roots/powder 

extract glucose level109 

10) Salacia chinensis 
(Celastaceae) Modhupal Leaves/aqueous 

extract serum glucose level108 

11) Syzgium cumini 
(Myrtaceae) Jamun Roots/powder 

extract serum glucose level108 

12) Tamarindus indica 
(Caesalpiniaceae) Tamarind Seeds/aqueous 

extract 
Low density lipoprotein (LDL) and 

high density lipoprotein (HDL) level110 

13) Trigonella foenum graecum 
(Leguminosae) Fenugreek Seeds/aqueous 

extract improved insulin sensitivity111 

14) Vitis vinifera 
(Vitaceae) Grapes Seeds/ aqueous extract prevent insulin resistance112 
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Table 8: Supportive plants used in diabetes, as artificial sweeteners 
 

S. no. Plant name Common name Part used/ Type of extract Observed result 

1) Glycyrrhiza glabra 
(Fabaceae ) Liquorice Roots/ ethanolic 

extract LDL level and HDL level
113

 

2) Stevia rebaudiana 
(Compositae) 

Sweet leaf of 
paraguay 

Leaves/aqueous 
extract antihyperglycemic, antihypertensive and anti human rotavirus activity

114
 

 
Figure 8: Mechanism of action and biological activity of C-peptide. 

 
Ca

2+
= calcium ion, eNOS = endothelial nitric oxide synthase, NO= Nitrous oxide, Na 

+
K 

+
ATPase- P = sodium potassium ATPase channel phosphorylation. 

 
 
3. BIOMARKERS OF DIABETES 
Biomarker is defined as “biological molecule that represents health 
and disease state” measured in body fluids. In blood HbA1c, blood 
glucose level, triglyceride levels, cholestrol level, blood urea level, 
and creatinine and ketone levels are measured to study the diabetic 
state. In addition to this, now a days C- peptide is also considered 
as important biomarker for determining the level of diabetes115. 
 
3.1 C-Peptide 
C-peptide is a polypeptide with molecular weight (MW) 3600, 
containing 31amino acid. Degradation of the C-peptide is mainly 
takes place in kidney and half life of C-peptide in circulation is 2-5 
time longer than insulin. It is generally known that C-peptide 
precursors having little or no biological activity but currently 
available information establishes that C- peptide is not biologically 
inert, but having its own physiological effects116. 
 
3.1.1 Mechanism of action and biological activity of C-Peptide 
Peptide is produced by a series of enzymatic cleavage of the 
precursor molecule preproinsulin and pro insulin, in pancreas116. C-
peptide acts through G-protein coupled receptor to activate 
calcium-dependent signalling pathway117. This calcium signalling 
pathway is thought to activate the inactive form of Na+ K+ ATPase 
enzyme through phosphorylation of Phosphatase II B Ca+ protein, 
ultimately influence the membrane permeability and leads to 
decreased glomerular hyperfilteration and results in renoprotection. 
Moreover, increase in intracellular calcium level through calcium 
channel leads to activation of endothelial nitric oxide synthase 
(eNOS) which result in release of nitrous oxide (NO) from 
endothelial membrane and this NO decreased vascular and smooth 
muscle proliferation and improve the endothelial function. This 
improved endothelial function results in the reduction of neural and  
 
 

 
 
cardiac dysfunctioning, which reveals a protective action of C-
peptide in neural and cardiac dysfunctioning118, 116. 
 
3.1.2 Physiological role of C-peptide 
Peptide having the capacity to diminish glomerular hyperfilteration 
and reduce urinary albumin excretion119 , enhanced Na+, K+-  
ATPase activity in neuropathy120 and prevents vascular 
dysfunctioning118 in experimental and type 1 diabetes119. 
 
3.2 Glycated Hemoglobin 
Glycated hemoglobin (GHb) is another biomarker used in diabetes 
mellitus. It is formed by the non- enzymatic addition of a sugar 
residue and it consists of Hemoglobin A1 (90-95%), A2 (2-3%), F 
(0.5%), A1a (1.6%), A1b (0.8%) and A1c (3-6%) 121. The conversion 
of HbA to HbA1c takes place during entire life span of red blood 
cells, so concentration of HbA1c is higher in old red cells120. GHb in 
blood is the only protein that widely used to monitor glycemic 
control 122. According to Americans Diabetic association, in normal 
adults Hb1Ac should be between 5-6 %. In diabetics, higher 
amount of glycated Hb is observed, indicating poorer control of 
blood glucose level, and associated with complications of 
cardiovascular disease, nephropathy, neuropathy and 
retinopathy123. 
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