Cyclodextrin Ternary Inclusion Complexation: A Strategy to Improve Solubility of Poorly Soluble Drugs

Mohammed Jafar*, Fatima Ibrahim Alshaer, Fatima Ali Adrees

Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam-31441, Saudi Arabia.

ABSTRACT

Cyclodextrins (CDs) consist of D-glucopyranoside units that are linked together by glycosidic bonds to form cyclic oligosaccharides. They are mainly employed to ameliorate the physicochemical properties and biological properties of poorly aqueous soluble drugs by the formation of inclusion complexes between the CD and drug. Inclusion complex formation requires the host molecules to fit completely or partially within the CD cavity. The uncomplicated settlement of guest molecules within the CD cavity, therapeutic dose, toxicity and stoichiometry all change according to the physicochemical properties of the guest and host molecules. However, dosage formed volume depends on the amount of CD required. So high amount of CD used leads to high dosage formed volume. Thus, it is necessary to improve the solubilization efficiency in order to use lesser amounts of CD. This could be reached by adding small amounts of water-soluble substances such as polymers, organic acids, amino acids, co-solvents, etc. to the inclusion complex. This review mainly focused on the aspects related to the formation of drugs and CDs’ inclusion complex by using different types of water-soluble substances to optimize the amount of CD used in the complexation in order to improve drug solubility, and decrease the bulk of dosage form.

Key Words: Cyclodextrins, Ternary Complex, Auxiliary Substances, Solubility, Complexation

INTRODUCTION

Drug dependence and tolerance is becoming an enormous mental health problem and physical effects worldwide and significantly affect the society [1]. And among many factors, aqueous solubility is of essential importance in the production of a sufficiently safe and effective drug delivery system, because formulation, absorption and the clinical response of a drug are all dependent on drug solubility. Many drugs have low water solubility due to the increasing use of lipophilic molecules in the treatment which also tends to increase more. However, many drugs have low water solubility due to the increasing use of lipophilic molecules in treatment which also tends to increase more [2]. Thus, among many different techniques to improve water solubility, the formation of inclusion complex with cyclodextrins (CDs) can be used. Cyclodextrins (CDs) consist of D-glucopyranoside units that are linked together by glycosidic bonds to form cyclic oligosaccharides. The most noticeable property of CDs is their ability to adjust to the physicochemical characteristics of drug molecules after being accommodated within their internal cavity to form what known as inclusion complexes [3]. After the formation of inclusion complexes, formulation can be obtained with faster dissolution rate, and shorter drug release time, and also more efficient absorption, which are the typical characteristics of inclusion complex. This can be translated to improved oral bioavailability and increasing biological activity, which will lead to the reduction of drug dosage [4]. However, because guest molecules need to fit completely or partially within the CD internal cavity, the use of CDs is limited in some...
cases. The easy accommodation of guest molecules within the CDs’ internal cavity, therapeutic dose, toxicity of CDs, and stoichiometry all change according to the physicochemical properties of the guest and host molecules [5].

A very critical stage in the applicability of the formulation of CD inclusion complex is the increase in the formulation volume. When the molecular weights of the drug are 200-400 g/mol and the CD is 1200-1500 g/mol, it can be considered that 1 g of solid complex reflects 100-250 mg of the drug. So, the applicability of CDs with oral solid dosage forms is limited to drug doses less than 200 mg that have excellent complexation properties [6]. Among different Cyclodextrins, beta cyclodextrin (BCD) has been the most commonly used inclusion compound owing to its vast availability, low cost, absolute biocompatibility and also wide reglative acceptance [7]. Moreover, the inner cavity of BCD is fortunately more appropriate for phytoconstituents like curcumin, and also for BCS-II synthetic drugs loading over other types of cyclodextrins [8]. Nevertheless, the poor aqueous solubility of BCD is a major hurdle in its vast application. A surge of scientific studies in this area detected that the incorporation of a small amount of suitable auxiliary materials like hydrophilic polymers, organic acids, amino acids, and hydroxyl organic amines, to a drug-BCD complex could ameliorate both the complexation and solubilizing potentialities of the BCD, and ultimately decreases its amount in pharmaceutical formulations [9, 10]. Such outcomes have been attributed to the complementary effect of added substance, and BCD to the formulation of ternary complexes.

The mechanism that participates in increasing CD complexation efficiency in the presence of added substances which are water-soluble has not yet been fully understood; however, it has been believed that the mobility of CD can be reduced, and the complex solubility can be increased by adding water-soluble polymers [11]. The addition of auxiliary substances such as water-soluble polymers has been shown to enhance the drug bioavailability, and cause an up to 80% reduction in the used amount of CD [12].

The aim of this review was to outline the influence of different types of hydrophilic compounds on drug-CD complex, and also various methods used for the formation of cycloextrin ternary inclusion complexes. The electronic databases such as Google Scholar, E-Resource Portal of Imam Abdulrahman bin Faisal University, Scopus, PubMed, Springer Link, etc. also textbooks were used to gather all the related information about cyclodextrin ternary inclusion complexes.

INFLUENCING OF HYDROPHILIC COMPOUNDS ON DRUG COMPLEXATION WITH CYCLODEXTRINS.

Mayank and Rajashree (2018) investigated the interaction of Cinnarizine (CIN) with Hydroxypropyl-β-Cyclodextrin (HPβCD) with the auxillary substance Hydroxy Acids (HA). They prepared different binary and ternary inclusion complex of CIN with HPβCD and HA by kneading and co-evaporation methods. In the formation of ternary systems, HAs have been used in three different concentrations. The phase solubility method was used to study the interaction in the solution phas; and the Fourier Transform Infrared (FTIR) spectroscopy, Proton Nuclear Magnetic Resonance (1H-NMR), Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), and Differential Scanning Calorimetry (DSC) were used to study the solid phase interaction. The positive effect of HA on the complexation of CIN with HPβCD was shown by Phase solubility. In this study, for the confirmation of ternary complex formation, the solid phase studies were used. A solubility and dissolution study explained that out of three various concentrations tried, HAs were with the greatest effect at the 1 molar concentration. Ternary systems were much more effective in enhancing the solubility and dissolution profile of CIN than the CIN-HPβCD binary systems [13].

Jafar et al (2018) improved the water solubility and dissolution profile of an NSAID meloxicam by using hydroxy propyl β-cyclodextrin ternary complexes employing co-solvents ethanolamines. First, kneading and solvent evaporation techniques were used to formulate meloxicam (MLX) binary complexes with Hydroxy propyl β-Cyclodextrin (HPβCD), then ternary complex of selected MLX-HPβCD binary complex was formulated by employing various ethanolamines through solvent evaporation method. The solvent evaporation method was the best one in the preparation of binary complex of meloxicam at the primary stage of the study, so it was used for preparing the ternary complex as well. MLX formed 1:1 M stoichiometric binary, and ternary inclusion complexes as clarified by the AL-type of phase solubility curve. An increase in the stability constant value (Kc) of MLX-HPβCD complex when ethanolamines added, conceded the higher complexation efficiency. Solid-state analysis by FTIR, TGA, and SEM of ternary complex evidenced the perfect inclusion complex formation. Ternary complexes showed better enhancement in drug dissolution when compared to the pure MLX and MLX-HPβCD binary complex. The ternary complex containing 1:1:1 molar ratio of MLX-HPβCD-DEA showed 86.91% drug dissolution over 1 hour, which was significantly high in relation to the ternary complexes containing monoethanolamines and triethanolamines, and it was found to follow imperatively matrix order release mechanism. Previously studied complexes illustrated that there was no significant change in physical appearance,
drug content or drug dissolution, which clearly showed the high in-vitro stability [14].

Merce et al (2018) in their study, investigated the spectroscopic parameters for the chelating power of supramolecular structures in the presence of Gallium and palladium, which are two important metal ions especially considered in the medical science. The obtained ternary complexes presented some degree of insolubility in many organic solvents, and different mixed proportions could be studied by a number of analytical techniques. The binding constants for the complexes in a major aqueous solution were not possible to be determined by Potentiometric Titrations, and the possible reasons were addressed. In the complexation, it was found out that based on the host in the βCD structure and to the binded metal ion, the participating basic sites were different, which resulted in a different spatial conformation and a distortion in the 3D structure. Bragg's peak values 2 for all the binary and ternary assemblies were given. Infrared spectroscopy gave the best wavelengths for the differentiation of the metal complex. C-3 from 13 Vitamin D and of C-2, C-3 and C-6 from βCD gave the most probable deprotonated –OH groups for the formation of a ternary complex. The analytical techniques of C NMR, UV-NIR and powder XRD, characterized the binary and the ternary supramolecular structures [15].

Ding et al (2018) studied the effect of a polymer hydroxypropyl methylcellulose on the complex formation of fenofibrate and hydroxypropyl-β-cyclodextrin (HP-β-CD). At first, they examined the phase solubility with an extra amount of drug in the HP-β-CD solutions with and without hydroxypropyl methylcellulose (HPMC). The binary and ternary complexes were made by ball milling. Fourier changed infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XPRD) and nuclear magnetic resonance spectroscopy (1H-NMR) which were utilized for characterizing the complex. The AL type phase-solubility diagram showed that the complexes of fenofibrate and HP-β-CD were formed with molecular ratio of 1:1. The results of the analysis confirmed the formulation of the inclusion complexes. To sum up, the interaction occurring between fenofibrate and HP-β-CD in the complexes and the HPMC effectively improve the complexation efficiency and stability constant. The in-vitro dissolution test suggested that the releasing of fenofibrate in ternary complex was greater than binary complex [16].

Jafar et al (2017) ameliorated the rate of dissolution and the aqueous solubility of an anti-diabetic drug Glimepiride by the incorporation in ternary cyclodextrin complexes engaging amino-acids. Primarily, the binary complexes of Glimepiride GMP, β-Cycodextrin (βCD) and Hydroxy propyl β-Cycodextrin (HPβCD) were formulated using physical mixing method, solvent evaporation kneading, and spray drying. The binary complex of GMP Cyclodextrin was incorporated with several amino-acids in order to form ternary complex via kneading method. Kneading method was selected in order to prepare ternary complexes of glimepiride, due to the proven ability in yielding binary complexes of GMP in the beginning of the study. Glimepiride formulated (1:1: M stoichiometric binary, and ternary insertion complexes as evinced in the phase of solubility curve (AL-type). A raise in kc -stability constant value - of the complex (glimepiride - βCD/HPβCD) in company with amino-acids displayed advanced complexation capability. The optimal insertion complexes creation was demonstrated by utilizing DSC, FTIR studies. The dissolution of the drug in ternary complexes was improved in comparison with binary (GMP-βCD) and glimepiride alone. The ternary complex was composed of a molar proportion of (1 GMP: 3 HPβCD: 2 L-ARGININE), and showed a drug dissolution of 98.85% in span of two hours, which was meaningfully greater compared to the other amino-acids’ ternary complexes. In addition, it showed following the first order based on the law of Hixson-Crowell’s cube root. The great in-vitro stability was displayed with the stability of the content of the drug, physical characteristics, and dissolution. [17]. There have been a lot of such reports (Table-1), wherein researchers proved the positive influence of variety of hydrophilic compounds in ameliorating the complexation and aqueous solubility potential of cyclodextrins, and reducing their bulk in pharmaceutical formulations.

AbouEllef, et al (2018) examined thermodynamic solvation parameters for saturated benzoic acid and some of its derivatives in binary mixtures of ethanol and water. The solubility was increased when the mole fraction of ethanol increased in the binary mixtures, and also their solvation behaviors were increased by increasing temperature [18].

TECHNIQUES FOR THE FORMULATION OF TERNARY INCLUSION COMPLEXES

Cyclodextrins contain inner lipophilic holes, belong to OH groups in the outer layer, and the insertion of lipophilic drugs occurred utilizing hydrophobic binding among the drug molecules with the inner hole of cyclodextrin [19]. Nevertheless, other bonds like dipole-dipole and van der Walls binding might be engaged in the binding of the guest compound. The creation of cyclodextrins has been a modest procedure despite several different factors and numerous different binding forces. Several methods can be utilized in order to obtain cyclodextrin- drug complex based on the characteristics of the guest and the selected cyclodextrin.
Spray drying method
It is a significant promising method of the preparation of cyclodextrin ternary inclusion complexes. In this method, cyclodextrin along with drug and auxiliary substances is dissolved in a common solvent, and the fluid is converted into solid particles, by atomization process by the contact of droplets with hot gaseous medium converting the droplets into dry powder with zero moisture content [20]. Four main steps engaged within spray drying method are as under: 1st: automation of the liquid feed; 2nd: drying spry into dry gas; 3rd: the formation of the dry particles; and 4th: collecting the powder.

- Variables affecting the product of spray drying:
The main affecting variables are the parameters of process (flow rate of liquid feed, rate of flowing of drying gas, the rate of drying, gas inlet temperature, the percentage of aspiration, type of gas, pressure). Liquid feed (including viscosity, concentration, density, surface tension, solvent point boiling), and other variables such as co-current flow, counter-current flow, mixed flow and atomizer geometry are examined [21].

- Advantages:
Spray drying technique compared to the other techniques has been considered fast, convenient, reproducible single step [22]. And, it has relevance to both manufacturing and research laboratory locations [23]. Moreover, in spray drying, no major final modification is needed in the final step of drying to generate particles as in the other methods such as emulsion, solvent evaporation [24]. Additionally, compared to the freeze-drying technique, spray drying is less time consuming and less costly because it does not include deep cooling, which consumes extensive energy [23]. Spray drying is suitable for heat-sensitive substances without harming the substances [25]. Other advantages of spray drying is the fast evaporation of the solvent because of the high surface area-to-volume ratio [26]. Spray drying increases the shelf-life of the products by making dry powder [27]. It is used in different areas of industry (e.g. encapsulation of drugs, aromatic oils, pigments, flavors, etc.), and in addition it is used to produce different types of carriers like microparticles, polymeric nanoparticles and nanocomposite [28].

- Disadvantages:
The laboratory yield is considered low (20% to 70% only) due to sticking the product on the surface of the chamber wall [29]. The inefficient separation assimilation of cyclone makes tiny particles (less than 2µm) to push through exhaust air [30]. Moreover, the nanometer particles production is limited because of the lack of enough forces of liquid atomization (pressure and centrifugal) to obtain large amounts of submicron particles [31], which makes it a remarkable drawback in manufacturing IV deliver system which is largely affected by size and distribution [32].

Air jet milling method
Air jet mill is a device used to grind materials mostly the hard ones by using gas in high speed through the vibrating feeder. Materials pass to the chamber of grinding, then, the particles are moved by high speed air passing over nozzle before entering the chamber of grinding. By the extreme pressure and the speed from the air, the particles become agitated because of the dual interaction of particles and the wall, this agitation results in fracture plus reducing the particles magnitude [33].

- Variables affecting the production by Air jet milling:
Different variables can influence the manufacture of air jet mill including the rate of feeding, the pressure of the pusher nozzle and the grinding nozzle, and the type of gas used [34]. Additionally, the particle size before and after the milling process, velocity, the nozzle type and diameter, and the angle of penetration the jet -ideally 52-60 degree, the pressure of injector can affect the manufacture of air jet mill [35].

- Advantages:
Air jet milling has been considered as a practical method for producing very minute particles of smaller than 40 micrometers. Additionally, the energy of air jet is based on the sound speed which is contrariwise relative to the root of the gas molecular weight, so by changing the gas, the sizes of particles and their distribution is easily manageable. Moreover, there is the low risk of contamination [35]. Air jet milling has been considered as a convenient method for laboratory scale production of hard materials [36].

- Disadvantages:
Air jet milling has high consumption of energy [35]. In 2010, Saleem and Smyth studied the use of air jet mill for soft materials instead of hard ones to produce 5 micrometer size particles. The investigator found that air jet milling was not effective in soft materials’ production. The incorporation of freeze drying along with air jet milling helped in reducing the hardness and stretchiness thus reducing the energy required by air jet milling. Moreover, the particles after milling are not used in pharmaceutical dosage directly, but considered as a transition state. Most of the times, fillers are used along with milled drugs like: (lactose, calcium phosphate) and others to overcome the problem of low flow and cohesiveness due to the high surface energy. Due to the high energy, the particles complex with the thinner diffusion boundary layer [37]. The roughness of milled drug is changed which can affect the process of wetting.
solvent and its amount, the rate of solvent removal, drug efficacy of the encapsulation including carbon-based
There are many factors to be considered which affect the
60°C till the solvent evaporates. The product is dried at
bath sonicator for 5 minutes, and then the solution is
dissolved in a required amount of solvent by using
For the formation of insertion complex, the components
are dissolved in a required amount of solvent by using
ball sonicator for 5 minutes, then, the mixture
sonicates for 30 minutes after that, it is placed in an
incubator shaker at 40°C for 72 hours. Then, the mixture
emulsion followed by solvent evaporation has poor
encapsulation. The efficiency of the moderately water
soluble compound is not very strong to prevent the
crystalline formation as compared to the spray drying
method; so, the spray drying method has better
dissolution profile [49].

Freeze drying / Lyophilization technique
In order to get a permeable, shapeless (amorphous) powder with the great percent of binding between drug &
and enhancing the dissolution and bioavailability by
amorphization [41], and additionally, easing the creation of complexes [42]. The integration of excipients might
reduce the milling-induced amorphization and structural
abnormalizes of some substances [43]. Also, the creation
stable co-amorphous mixture of the dual drugs is
classified in BCS class II [44]. In 2010, Imran et al
investigated the use of air jet mill and micro-ball milling in micro-sizing of a soft substance of the ball milling
found to be superior under cold condition in yielding
lower range of particle size [34].

Disadvantages:
Despite the effectiveness of ball milling, it is less efficient
in large scale production. Jacketing is required for heat
elimination and cooling the milling chamber.

Solvent evaporation method
For the formation of insertion complex, the components
are dissolved in a required amount of solvent by using
bath sonicator for 5 minutes, and then the solution is
placed in rotary vacuum evaporator at temperature of
60°C till the solvent evaporates. The product is dried at
50°C, and stayed in the vacuum for one day, after 24
hours, the product is passed over an 80-net filter [13].

There are many factors to be considered which affect the
efficacy of the encapsulation including carbon-based
solvent and its amount, the rate of solvent removal, drug
solubility, distribution coefficient plus molar mass of
drugs [45].

Advantages:
Simple procedure, ease of scale-up, less residual solvent
retains the activity of bioactive compounds. It is
beneficent over the melting method by producing quick
and complete dissolution deprived of rebound
consequences due to the higher permeable medication
delivery system [46]. It prevents the presence of drug in
crystalline form. It is alternative to spray drying method
[47].

Disadvantages:
There is a low drug-loading efficiency [48]. Oil/water
emulsion followed by solvent evaporation has poor
encapsulation. The efficiency of the moderately water
soluble compound is not very strong to prevent the
crystalline formation as compared to the spray drying
method; so, the spray drying method has better
dissolution profile [49].

Variables affecting the production:
Diverse variables will influence the production including the extent of filling, and the strength of the procedure
which is determined by the starting materials and the
amounts of balls. Generating minute particles is
influenced greatly by the compression, impaction and
lengthier processing periods. Other variables including the rotation and vibration speed, density, size and
hardness of balls are also affected [40].

Advantages:
Ball milling is a remarkable method used to boost the solubility of low soluble drugs. Additionally, it is used as
mixing method increasing the co-ground amorphous drugs with hydrophilic excipient at the molecular level,
and enhancing the dissolution and bioavailability by
amorphization [41], and additionally, easing the creation of complexes [42]. The integration of excipients might
reduce the milling-induced amorphization and structural
abnormalizes of some substances [43]. Also, the creation
stable co-amorphous mixture of the dual drugs is
classified in BCS class II [44]. In 2010, Imran et al
investigated the use of air jet mill and micro-ball milling in micro-sizing of a soft substance of the ball milling
found to be superior under cold condition in yielding
lower range of particle size [34].

Disadvantages:
Despite the effectiveness of ball milling, it is less efficient
in large scale production. Jacketing is required for heat
elimination and cooling the milling chamber.

Ball milling technique
Ball mill technique is used in laboratory setting to produce micro-particles. It consists of a vessel that is
occupied with balls made of diverse materials (e.g. silicon nitride, ceramic, sintered corundum, chromes steel, plastic
polyamide etc.). The materials fill the vessel, then the vessel rotate and vibrate in different speed and frequency.
The balls move in a pattern with each other, and they crash with the opposite wall. The forces generated from
crashing the particles of the materials reduce the size [39].
become wet because of the humidity which allows for the microbial growth.

Kneading method
For the formation of insertion complex, the required quantities of components dry in mortar for 15 minutes. Then the mixture is kneaded with ethanol for 45 minutes during this process solvent can be added to reach the suitable consistency for kneading. After that, it should be dried at 50°C and stay in vacuum for one day, and then sieved through 80 net filters [54]. There are many factors which influence the formation and efficacy of inclusion complex which include the composition of powder, initial water content, and molar ratio.

- **Advantages:**
 It has a simple and cheap procedure. It can be used for poor water-soluble compounds, since the compounds dissolve slowly by forming inclusion complexes. It is most widely used for essential oils encapsulation, because there is no need for high temperatures.

- **Disadvantages:**
 Less quantity of medication is released as compared to the solvent evaporation method. There is not very strong prevention of crystalline formation as compared to the spray drying method, so that spray drying method has better dissolution profile. It is not suitable for the extensive production.

Different methods employed in the formulation of cyclodextrin ternary inclusion complexes which are reported in the literature as presented in Table 1.

CONCLUSION
Cyclodextrins are able to boost and ameliorate the solubility of low soluble medications, through the process of encapsulation of organic drugs in their holes; so the formation of inclusion complexes change the physical and the chemical properties of such medications. The drug:CD:Hydrophilic substances ternary complex represents an attractive substitute, particularly in situation where huge amounts of cyclodextrins is required in order to form complex, that leads to the meaningfully enlarged bulk of dosage forms. Thus, it is more likely to obtain drug delivery systems with an optimized dissolution profile, resulting in improved bioavailability.

ACKNOWLEDGEMENTS
The authors would like to thank Imam Abdulrahman Bin Faisal University for providing library facility and e-journal free access facility to write this review article.

Table 1: Some examples of recent studies that used different hydrophilic compounds/auxiliary substances and different methods of preparation in drug-CD inclusion complexes

<table>
<thead>
<tr>
<th>#</th>
<th>Drug</th>
<th>Type of cyclodextrin</th>
<th>Auxiliary Substances</th>
<th>Method(s) of preparation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rilpivirine</td>
<td>β-CD, HP-β-CD</td>
<td>Tocopherol polyethylene glycol</td>
<td>Solvent evaporation.</td>
<td>[54]</td>
</tr>
<tr>
<td>2</td>
<td>Feno-fibrate</td>
<td>HP-β-CD</td>
<td>Hydroxypropyl methylcellulose</td>
<td>Ball-milling</td>
<td>[16]</td>
</tr>
<tr>
<td>3</td>
<td>Cinnarizine</td>
<td>HP-β-CD</td>
<td>Hydroxy acids</td>
<td>Kneading and evaporation methods.</td>
<td>[13]</td>
</tr>
<tr>
<td>4</td>
<td>Sulfoxathoxazol</td>
<td>β-CD, HP-β-CD</td>
<td>Arginine and cysteine</td>
<td>Freeze drying method</td>
<td>[55]</td>
</tr>
<tr>
<td>5</td>
<td>Esfavirenz</td>
<td>Hp-β-CD</td>
<td>L-arginine</td>
<td>Spray drying method.</td>
<td>[56]</td>
</tr>
<tr>
<td>6</td>
<td>Celecoxib</td>
<td>αCD, βCD, γCD, 2-hydroxypropyl β-cyclodextrin and RMβCD</td>
<td>HPMC, chitosan, hyaluronic acid</td>
<td>Freeze drying method</td>
<td>[57]</td>
</tr>
<tr>
<td>7</td>
<td>Benznidazole</td>
<td>βCD</td>
<td>TEA, NMP</td>
<td>Spray-dried particles</td>
<td>[58]</td>
</tr>
<tr>
<td>8</td>
<td>Porphylin</td>
<td>HP-β-CD, M-β-CD, Hk-β-CD</td>
<td>Poloxamer</td>
<td>Solvent evaporation method.</td>
<td>[59]</td>
</tr>
<tr>
<td>9</td>
<td>Nateglinide</td>
<td>HP-β-CD</td>
<td>L-arginine</td>
<td>Kneading, Co-evaporation, and spray drying methods</td>
<td>[60]</td>
</tr>
<tr>
<td>10</td>
<td>Etodolac</td>
<td>HP-β-CD</td>
<td>L-arginine</td>
<td>Co-evaporation, and spray drying methods.</td>
<td>[61]</td>
</tr>
<tr>
<td>11</td>
<td>Oxaprazin</td>
<td>RAMEB</td>
<td>L-arginine and sepiotitanoclay</td>
<td>Cogrinding, coevaporation, cofusion.</td>
<td>[62]</td>
</tr>
<tr>
<td>12</td>
<td>Ciprofloxacin</td>
<td>βCD, β-glycerophosphate</td>
<td>hexamethylenedisoccynate (HDI)</td>
<td>Kneading method</td>
<td>[63]</td>
</tr>
<tr>
<td>13</td>
<td>Oxaprazin</td>
<td>rameβCD</td>
<td>L-arginine</td>
<td>co-grinding, evaporation, kneading techniques.</td>
<td>[64]</td>
</tr>
<tr>
<td>14</td>
<td>Benznidazole</td>
<td>HP-β-CD</td>
<td>TEA, NMP</td>
<td>spray drying method.</td>
<td>[65]</td>
</tr>
<tr>
<td>15</td>
<td>Silymarin</td>
<td>β-CD</td>
<td>Sodium carboxymethyl cellulose</td>
<td>Kneading method.</td>
<td>[66]</td>
</tr>
<tr>
<td>16</td>
<td>Praziquantel</td>
<td>β-CD</td>
<td>HPMC</td>
<td>Kneading method freeze drying</td>
<td>[52]</td>
</tr>
</tbody>
</table>
REFERENCES

[43] Balani PN, Ng WK, Tan RB, et al. 2010. Influence of excipients in commilling on mitigating milling-

[60] Vasanti Suvarna, Apeksha Kajwe, Manikanta Murahari, Gurubasavaraj V. Pujar,

