

ISSN (Online) 2249-6084 (Print) 2250-1029

International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) [Impact Factor – 0.852]

Journal Homepage: www.eijppr.com

Research Article Development and Validation of RP-HPLC Method for Simultaneous Estimation of Vitamins B₁, B₃, B₅ and B₆ in Multi Vitamin Injection

T. Jeyalakshmi¹, A. Chenthilnathan^{1*} and A. Vairamani²

¹Department of Pharmaceutical Chemistry, Manonmaniam Sundaranar University, Tirunelveli – 627 012, Tamil Nadu, India. ²Caplin Point Laboratories Ltd., Gummidipoondi Taluk, Chennai – 601 201, Tamil Nadu, India.

Article info

Abstract

Article History: Received 2 May 2014 Accepted 31 October 2014

Keywords: Vitamins B1, B3, B5, B6, Multivitamin injections, RP-HPLC, Validation.

hydrochloride), B_3 (Nicotinamide), B_5 (Dexpanthenol) and B_6 (Pyridoxine hydrochloride) in a combined multivitamin injection dosage form has been developed and validated. The Chromatographic Separation was carried out on Water C18 (250 × 4.6mm; 5µm) column using the mobile phase consists of buffer (pH 3.5) and methanol in the ratio 95:5. The mobile phase was flowed at the rate of 1.5 ml/min and effluent was detected at 210 nm. The retention times of Thiamine hydrochloride, Nicotinamide, Dexpanthenol and Pyridoxine hydrochloride were 2.492 min, 6.748 min, 20.084 min and 4.077 min respectively. The method was validated according to ICH guidelines and the acceptance criteria for system suitability, specificity, linearity, accuracy, precision and ruggedness were met in all cases. The method was linear in the range of 10-200 μ g/ml for Thiamine hydrochloride (r² = 0.9992), 40-800 μ g/ml for Nicotinamide (r² = 0.9994) 10-200 μ g/ml for Dexpanthenol (r^2 = 0.9993) and 8-160 µg/ml for Pyridoxine hydrochloride (r^2 = 0.9991). The percentage relative standard deviation for precision was found to be less than 2.0%. Hence, the method could be successfully applied for routine analysis of B1 (Thiamine hydrochloride), B3 (Nicotinamide), B5 (Dexpanthenol) and B6 (Pyridoxine hydrochloride) from multivitamin injections.

A simple, efficient and reproducible RP-HPLC method for simultaneous determination of vitamins B1 (Thiamine

1. INTRODUCTION

Thiamine hydrochloride (Fig. 1) chemically, 2-[3-[(4-amino-2methylpyrimidin-5-yl) methyl]-4-methyl-1, 3-thiazol-3-iu ethanol hydrochloride, used to treat ulcerative colitis 3-thiazol-3-ium-5-yl] and persistent diarrhea ¹⁻⁷. Nicotinamide (Fig.2) chemically, pyridine-3carboxamide, used to treat skin disorders, anxiety, Alzheimer's disease ^{2,8-12}. Dexpanthenol (Fig.3) chemically, 2,4-Dihydroxy-N-(3- hydroxypropyl)-3,3-dimethylbutanamide, used to minimize paralytic ileus; treatment of postoperative distention; topical to relieve itching and to aid healing of minor dermatoses^{3,13-17} Chemicaly, 5-Bis Pvridoxine hydrochloride (Fig. 4) (hydroxymethyl)-2-methylpyridin-3-ol hydrochloride, used to treat nausea and vomiting in early pregnancy 4,18-22

Hydrochloride

Nicotinamide

*Corresponding Author:

Assistant Professor & Head i/c

Department of Pharmaceutical Chemistry, Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu Email: ala.chenthil@gmail.com

A literature survey revealed that a few analytical methods have been reported for the estimation of these vitamins individually or in combination with other vitamins by UV Spectrophotometry 5,23-26, High- Performance Liquid Chromatography 6.27, Electrospray ionization- mass spectrometry ^{7,28}, reversed-phase ion-pair high performance liquid chromatography ^{8,29}. In this present work, an attempt was made to develop a simple, feasible and simultaneous determination of vitamins B1, B3, B5 and B6 in combined multivitamin injection by RP-HPLC. The proposed method was validated in accordance with International Conference Harmonization (ICH) guidelines9.

2. MATERIALS AND METHODS

2.1 Experimental

2.1.1 Chemicals and reagents

Methanol of HPLC grade, Potassium di hydrogen phosphate and Phosphoric acid were purchased from E.Merck (India) Ltd.. Mumbai. Vitamins B1, B3 B5 and B6 were a gift sample by Caplin Point Laboratories Ltd., Gummidipoondi Taluk, Chennai - 601 201, Tamil Nadu, India. The commercially available multivitamin injection containing B1 (Thiamine hydrochloride), B3 (Nicotinamide), B5 (Dexpanthenol) and B6 (Pyridoxine hydrochloride) were procured from the local market.

2.1.2 Instrumentation and chromatographic conditions

The Chromatographic Separation was carried out on Water C18 (250 x 4.6mm; 5µm) column using the mobile phase consists of buffer (pH 3.5) and methanol in the ratio 95:5. The mobile phase was flowed at the rate of 1.5 ml/min and effluent was detected at 210 nm. The volume of injection loop was 20 µl prior to the injection of the drug solution; the column was equilibrated for at least 15 min. with the mobile phase following through the system.

A. Chenthilnathan

2.1.3 Preparation of Standard and Sample Preparations

a) Standard Preparation

Weighed accurately about 50 mg of Thiamine hydrochloride, 200 mg of Nicotinamide WS 50mg of Dexpanthenol and 40 mg of Pyridoxine hydrochloride transferred into a 50 ml volumetric flask. Added 20 ml of mobile phase used as diluent and Sonication was done for 5 minutes. Dissolved and diluted up to the volume with mobile phase. Transferred 5 ml of the above solution through a pipette into a 50 ml volumetric flask and diluted up to the volume with mobile phase. Filtered the solution through 0.22 μ m Nylon filter and collected the solution in a HPLC vial after discarding the first 2 ml of filtrate.

b) Sample Preparation

Transferred 2 ml of the sample (which is equivalent to 10 mg of Thiamine Hydrochloride, 40 mg of Nicotinamide, 10 mg of Dexpanthenol and 8 mg of Pyridoxine Hydrochloride) through a pipette into a 100 ml volumetric flask. Added 20 ml of Diluent and Sonication was done for 5 minutes. Dissolved and diluted up to the volume with diluent. Filtered the solution through 0.22 µm Nylon

filter and collected the solution into a HPLC vial after discarding the first 2 ml of filtrate.

All of the analytical validation parameters for the proposed method were determined according to International Conference on Harmonization (ICH) guidelines.

3. RESULTS AND DISCUSSION

3.1 System Suitability

It is essential for the assurance of the quality performance of chromatographic system. Five injections of standard drug solutions, Vitamins B₁ (Thiamine hydrochloride), B₃ (Nicotinamide), B₅ (Dexpanthenol) and B₆ (Pyridoxine hydrochloride) were given separately to the system. The system suitability parameters such as retention time, peak area response, Tailing factor and number of theoretical plates and their Mean, Standard drug solutions and mentioned in Table 1 - 4. It was observed that all the values are with in the limits.

Table	1: System	suitability for	Vitamin B ₁	(Thiamine	hydrochloride)
-------	-----------	-----------------	------------------------	-----------	----------------

S No	Standard	System suitability parameters					
S. NO. Stanuart		Peak area response	Number of theoretical plates	Tailing factor	Retention time (min)		
1.	Standard -1	1506.9836	6397	1.28	2.492		
2.	Standard -2	1509.3949	6127	1.29	2.483		
3.	Standard -3	1510.0985	6331	1.3	2.479		
4.	Standard -4	1516.7497	6281	1.29	2.469		
5.	Standard -5	1507.4094	6034	1.31	2.457		
Mean	2.471						
Standard deviation					0.018		
RSD in	0.728						

Table 2: System suitability for Vitamin B₃ (Nicotinamide)

S No	Standard	System suitability parameters					
3. NO.		Peak area response	Number of theoretical plates	Tailing factor	Retention time (min)		
1.	Standard -1	18462.30	14675	1.14	6.748		
2.	Standard -2	18685.10	14686	1.11	6.407		
3.	Standard -3	18320.90	14840	1.09	6.211		
4.	Standard -4	18419.50	16212	1.20	6.399		
5.	Standard -5	18629.32	16355	1.14	6.628		
Mean	6.541						
Standard deviation					0.243		
RSD in	3.715						

Table 3: System suitability for Vitamin B₅ (Dexpanthenol)

S No	Standard	System suitability parameters					
3. NO.	Stanuaru	Peak area response	Number of theoretical plates	Tailing factor	Retention time (min)		
1.	Standard -1	666.79993	18558	0.85	20.064		
2.	Standard -2	664.86530	19569	0.86	18.821		
3.	Standard -3	669.37195	18836	0.86	18.270		
4.	Standard -4	668.22229	19315	0.87	18.895		
5.	Standard -5	667.49945	18754	0.87	19.782		
Mean	19.398						
Standard deviation					0.871		
RSD in	4.49						

Table 4: System suitability for Vitamin B₆ (Pyridoxine hydrochloride)

S No	Standard	System suitability parameters					
S. NO. Standard		Peak area response	Number of theoretical plates	Tailing factor	Retention time (min)		
1.	Standard -1	4036.2522	12915	0.79	4.077		
2.	Standard -2	4014.3444	13096	0.81	3.890		
3.	Standard -3	4024.7307	13906	0.82	3.785		
4.	Standard -4	4021.0183	12934	0.83	3.865		
5.	Standard -5	4033.6352	12592	0.83	3.973		
Mean	3.945						
Standard deviation					0.12		
RSD in	3.042						

3.2 Specificity

The specificity of the HPLC method is illustrated in Fig. 5, where a complete separation of Vitamins B₁, B₃, B₅, and B₆ were noticed in presence of other inactive excipients used in injections. In addition, there was no any interference at the retention time of in the chromatogram of placebo solution. In peak purity analysis with PDA, purity angle was always less than purity threshold for the analyte. This shows that the peaks of analyte were pure and excipients in the formulation does not interfere the analyte. The data were presented in the Table 5 -8.

Table 5: Specificity for Vitamin B1 (Thiamine hydrochloride)

S. No.	Name	No. of Injections	Area
1.	Blank	1	Nil
2.	Placebo	1	Nil
3.	Standard	1	1496.62610
4.	Sample	1	1453.84509

Table 6: Specificity for Vitamin B₃ (Nicotinamide)

S. No.	Name	No. of Injections	Area
1.	Blank	1	Nil
2.	Placebo	1	Nil
3.	Standard	1	618.68878
4.	Sample	1	689.46204

Table 7: Specificity for Vitamin B₅ (Dexpanthenol)

S. No.	Name	No. of Injections	Area
1.	Blank	1	Nil
2.	Placebo	1	Nil
3.	Standard	1	18.8249
4.	Sample	1	18.1719

Table 8: Specificity for Vitamin B₆ (Pyridoxine hydrochloride)

S. No.	Name	No. of Injections	Area
1.	Blank	1	Nil
2.	Placebo	1	Nil
3.	Standard	1	3758.68530
4.	Sample	1	3687.21362

Figure 5: Typical HPLC Chromatogram of Sample Injection (Vitamins $B_1, B_3, B_5,$ and B_6)

3.3 Linearity and Range

The Linearity of this method was determined at five levels from 10%–200% of operating concentrations for Vitamins B₁, B₃, B₅, & B₆ and it was shown in Table 9. The plots of peak area of each sample against respective concentrations of Vitamins B₁, B₃, B₅, and B₆ were found to be linear (Fig.6 – 9) in the range of 10%–200% of operating concentrations. Beer's law was found to be obeyed over this concentration range. The linearity was evaluated by linear regression analysis using least square method. The linear regression equations and correlation coefficient were found. It observed that correlation coefficient and regression analysis were with in the limits.

Table 9: Linearity of response for Vitamins B₁, B₃, B₅ and B₆

Target level %	Concentration of (µg/ml)				Area obtained			
-	Vit. B₁	Vit. B ₆	Vit.B₅	Vit.B ₃	Vit. B ₁	Vit. B ₆	Vit.B₅	Vit.B ₃
10	10	8	10	40	174.75247	447.88669	65.7784	2158.47339
20	20	16	20	80	317.44849	814.6073	117.89529	3372.2998
50	50	40	50	200	736.44342	1879.89197	276.66666	8007.56055
100*	100	80	100	400	1599.89001	3750.21069	569.1496	16595.6000
120	120	96	120	480	1843.60242	4672.05469	690.27618	20226.8000
160	160	128	160	640	2536.22559	6347.97607	941.20715	26773.0000
200	200	160	200	800	3173.59131	7779.61475	1180.0033	32823.5000

Operating concentration

Figure 6: Linearity curve for Vitamin B₁

T. Jeyalakshmi et al / Int. J. Pharm. Phytopharmacol. Res. 2014; 4 (2): 89-94

Figure 7: Linearity curve for Vitamin B₃

Figure 8: Linearity curve for Vitamin B₅

Figure 9: Linearity curve for Vitamin B₆

3.4 Accuracy

Accuracy of the method was found out by recovery study by standard addition method. The known amounts of standards, Vitamins B₁, B₃, B₅, & B₆ were added to pre-analysed samples at a level from 80% up to 120% and then subjected to the proposed HPLC method individually. The results of recovery studies were shown in Table 10 -13. It was observed that the mean percentage recoveries were found to be for Vitamins B₁, B₃, B₅, & B₆ which demonstrated that the method was highly accurate.

Table 10: Accuracy for Vitamin B1

S. No.	Target level	Vitamin B ₁ added (mg)	Vitamin B₁ recovered (mg)	Drug Recovery (%)
1.	80%	0.08072	0.081959	101.53
2.	80%	0.08256	0.081978	99.29
3.	80%	0.08372	0.082925	99.05
4.	100%	0.0973	0.097017	99.71
5.	100%	0.09936	0.098721	99.36
6.	100%	0.1033	0.102717	99.44
7.	120%	0.1204	0.119976	99.65
8.	120%	0.1193	0.11935	100.04
9.	120%	0.1191	0.11957	100.39
Mean		99.82		
Standa	rd deviation	0.75		
RSD in	%	0.72		

S. No.	Target level	Vitamin B₃ added (mg)	Vitamin B₃ recovered (mg)	Drug Recovery (%)
1.	80%	0.32796	0.332321	101.33
2.	80%	0.32766	0.329363	100.52
3.	80%	0.3287	0.331873	100.97
4.	100%	0.39264	0.388955	99.06
5.	100%	0.39712	0.393651	99.13
6.	100%	0.3982	0.405913	101.94
7.	120%	0.47402	0.46955	99.06
8.	120%	0.47522	0.470682	99.05
9.	120%	0.47412	0.469398	99.00
Mean		100.00		
Standa	ard deviation	1.18		
RSD in	n %	1.18		

Table 11: Accuracy for Vitamin B₃

Table 12: Accuracy for Vitamin B₅

S. No.	Target level	Vitamin B₅ added (mg)	Vitamin B₅ recovered (mg)	Drug Recovery (%)
1.	80%	0.11900	0.119094	100.08
2.	80%	0.11792	0.118972	100.89
3.	80%	0.11972	0.119929	100.17
4.	100%	0.1121	0.11252	100.37
5.	100%	0.1139	0.113625	99.76
6.	100%	0.11736	0.117723	100.31
7.	120%	0.1193	0.119013	99.76
8.	120%	0.12046	0.12075	100.24
9.	120%	0.12042	0.120043	99.69
Mean				100.14
Standard deviation				0.37
RSD in %			0.38	

Table 13: Accuracy for Vitamin B₆

S. No.	Target level	Vitamin B₀ added (mg)	Vitamin B₅ recovered (mg)	Drug Recovery (%)
1.	80%	0.06494	0.065414	100.73
2.	80%	0.06378	0.064843	101.67
3.	80%	0.06604	0.065963	99.88
4.	100%	0.0773	0.07709	99.73
5.	100%	0.07802	0.078437	100.53
6.	100%	0.0807	0.081433	100.91
7.	120%	0.0945	0.093819	99.28
8.	120%	0.09428	0.093354	99.02
9.	120%	0.09378	0.092894	99.06
Mean				100.09
Standard deviation				0.92
RSD in %				0.92

3.5 Precision

The precision of an analytical procedure expresses the closeness of agreement between a series of measurements obtained from multiple sampling of the homogenous sample under the prescribed conditions.

3.6 Repeatability

Repeatability is the precision of a method under the same operating conditions over a short period of time. One aspect of this is instrumental precision. A second aspect is sometimes termed intraassay precision and involves multiple measurements of the same sample by the same analyst under the same conditions. Repeatability data for Vitamins B₁, B₃, B₅, & B₆ were shown in Table 14 -17. This indicated that method was highly precise.

Table 14: Precision – Repeatability for Vita	min B ₁
--	--------------------

S. No.	Sample Name	Area	Amount of drug present (mg)	Drug Recovery (%)
1.	Sample -1	1835.636	5.57	111.40
2.	Sample -2	1874.873	5.68	113.60
3.	Sample -3	1968.618	5.57	111.40
4.	Sample -4	2002.918	5.67	113.40
5.	Sample -5	2047.996	5.68	113.60
6.	Sample -6	2026.000	5.59	111.80
Mean				112.53
Standard deviation				1.10
RSD in %				0.98

Table 15: Precision – Repeatability for Vitamin B₃

S. No.	Sample Name	Area	Amount of drug present (mg)	Drug Recovery (%)
1.	Sample -1	21801.40	21.35	106.75
2.	Sample -2	21013.05	20.55	102.75
3.	Sample -3	22437.25	20.50	102.50
4.	Sample -4	22522.50	20.57	102.85
5.	Sample -5	23131.00	20.69	103.45
6.	Sample -6	23301.10	20.74	103.70
Mean				103.66
Standard deviation				1.57
RSD in %				1.52

Table 16: Precision – Repeatability for Vitamin B₅

S. No.	Sample Name	Area	Amount of drug present (mg)	Drug Recovery (%)
1.	Sample -1	676.740	5.35	107.00
2.	Sample -2	665.323	5.25	105.00
3.	Sample -3	727.344	5.37	107.40
4.	Sample -4	736.088	5.43	108.60
5.	Sample -5	725.891	5.24	104.80
6.	Sample -6	734.753	5.28	105.60
			Mean	106.4
			Standard deviation	1.50
			RSD in %	1.42

Table 17: Precision – Repeatability for Vitamin B₆

S. Sample No. Name		Area	Amount of drug present (mg)	Drug Recovery (%)
1.	Sample -1	4514.453	4.27	106.75
2.	Sample -2	4581.609	4.33	108.25
3.	Sample -3	4761.943	4.20	105.00
4.	Sample -4	4845.079	4.27	106.75
5.	Sample -5	5010.323	4.33	108.25
6.	Sample -6	5064.331	4.35	108.75
Mean				107.29
Standard deviation				1.40
RSD in %				1.30

3.7 Ruggedness

Six sample preparations were analyzed as per the methodology by a different analyst on a different instrument on a different day. The robustness data for Vitamins B₁, B₃, B₅, & B₆ were shown in Table 18. It was observed that there were no marked changes in the chromatograms, which demonstrated that the proposed method was ruggedness.

Table 18: Ruggedness data for Vitamins B1, B3, B5, & B6

S. No	Replicate Samples	Area of Vitamin B_1	Area of Vitamin B ₃	Area of Vitamin B₅	Area of Vitamin B ₆
1	Sample-1	1748.40869	20.27674	656.66705	4042.02734
2	Sample-2	1755.36145	20.56924	654.39532	4041.56006
3	Sample-3	1739.27173	19.83864	650.99624	4104.12305
4	Sample-4	1745.68652	19.84414	659.71875	4096.19873
5	Sample-5	1745.64014	19.73074	653.00732	4100.67236
6	Sample-6	1742.56311	19.40354	657.24158	4085.91895
Mea	ın	1746.15	19.94	655.33	4078.41
Standard Deviation		0.310	1.348	0.938	0.411
RSD (%)		0.278	1.338	0.888	0.393

4. CONCLUSION

The Proposed study describes a simple, feasible and sensitive reverse-phase high-performance liquid chromatographic method for the quantitative determination of vitamins B₁, B₃, B₅ and B₆ in a combined multivitamin injection dosage form. The method was validated as per ICH guidelines and found to be simple, specific, linear and precise. Therefore the proposed method can be successfully used for the routine analysis of vitamins B₁, B₃, B₅ and B₆ in pharmaceutical dosage form without interference.

5. ACKNOWLEDGEMENTS

The authors are thankful to the management of Caplin Point Laboratories Limited, Chennai - 601 201, Tamil Nadu, India for providing the necessary facilities to carry out for the research work.

REFERENCES

- 1. <u>http://www.nlm.nih.gov/medlineplus/druginfo/natural/965.h</u> <u>t</u> <u>ml</u>
- 2. https://doctorvolpe.com/add-adhd/vitamin-b3
- 3. http://www.drugs.com/pro/dexpanthenol.html
- 4. http://www.diclegis.com/
- Smita C. Nayak1, Preeti V. Kulkarni1, Vaidhun Bhaskar, Vinit Chavhan, "Development and Validation Of UV Spectrophotometric Method For Simultaneous Estimation Of Doxylamine Succinate and Pyridoxine Hydrochloride In Bulk And Tablet Dosage Form", International Journal of Pharmacy and Pharmaceutical Sciences, 2013;5(3),:390-393.
- N. Kitprapiumpo, P. Kulkanjanatorn and S. Wongyai, "Determination of Cyanocobalamin in Multivitamin Tablets by Multimode High-Performance Liquid Chromatography", Mahidol University Journal of Pharmaceutical Science, 2011; 381-2, 8-12: 9-12.
- Zhi Chen, Bo Chen, Shouzhuo Yao, "High-performance liquid chromatography/electrospray ionization- massspectrometry for simultaneous determination of taurine and 10 water-soluble vitamins in multivitamin tablets", *Analytical Chemical Acta*, 2006; 569 :169–175.
- K. Li., Simultaneous determination of nicotinamide, pyridoxine hydrochloride, thiamine mononitrate and riboflavin in multivitamin with minerals tablets by reversed- phase ion-pair high performance liquid chromatography, *Biomedical Chromatography*, 2002; 16(8): 504–507.
- ICH guidelines, analytical method validation (Q3). Geneva, July 2000.
- Pourmeidani H, Habibi M. Hierarchical defect tolerance technique for NRAM repairing with range matching CAM. 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013.
- Habibi M, Pourmeidani H. A hierarchical defect repair approach for hybrid nano/CMOS memory reliability enhancement. 2014. Microelectronics Reliability. 54(2), pp. 475-484.
- Niafar M, Bahrami A, Aliasgharzadeh A, Aghamohammadzadeh N, Najafipour F, Mobasseri M. Vitamin D status in healthy postmenopausal Iranian women. 2009. Journal of Research in Medical Sciences. 14(3), pp. 171-177
- Abolghasemi J, Eshraghian MR, Toosi MN, Mahmoodi M, Foroushani AR. Introducing an optimal liver allocation system for liver cirrhosis patients. Hepatitis Monthly.2013. 13(8)

- Adib S, Tiraihi T, Darvishi ., Taheri T, Kazemi H. Cholinergic differentiation of neural stem cells generated from cell aggregates-derived from Human Bone marrow stromal cells. Tissue Engineering and Regenerative Medicine, 2014. 12(1), pp. 43-52
- Amiridavan M, Nemati S, Hashemi SM, Jamshidi M, Saberi A, Asadi M. Otoacoustic emissions and auditory brainstem responses in patiens with sudden sensorineural hearing loss. Do otoacoustic emissions have prognostic value?. 2006. Journal of Research in Medical Sciences
- Mousavimughaddam SR. Healthy man and its role in the spiritual health and mental health from the viewpoints of rene descartes and allamah tabatabaei based on the interpretative attitude of almizan. 2014, Journal of Zanjan University of Medical Sciences and Health Services. 22(90), pp. 33-44
- Pakiman K, Ashoori T, Najafi M, Tabesh A, Abediniangerabi B. Micro tunneling in Tehran metropolis. International No-Dig Madrid 2014. International No-Dig Madrid 2014. IFEMA Convention CentreMadrid; Spain; 13 October 2014 through 15 October 2014; Code 110896.
- Rezaee O, Sharifi G, Samadian M, Haddadian K, Ali-Asgari A, Yazdani M. Endoscopic third ventriculostomy for treatment of obstructive hydrocephalus. 2007. Archives of Iranian Medicine. 10(4), pp. 498-503
- Shushizadeh MR, Kiany M. Solvent-free alkylation of dimethyl malonate using benzyl alcohols catalyzed by FeCl3/SiO2. 2009. Chinese Chemical Letters. 20(9), pp. 1068-1072.
- Rastegarian ., Abedi HA, Sepidkar A, Kheyrkhah N, Jahrom HK, Farzam M. The use of laryngeal mask airway in pilonidal cyst excision after muscle relaxant (Atracurium) injection in prone position. 2014. Biosciences Biotechnology Research Asia. 11(2), pp. 875-878.
- Rastegarian A, Abedi HA, Sepidkar A, Kheyrkhah N, Jahrom HK, Farzam M. The use of laryngeal mask airway in pilonidal cyst excision after muscle relaxant (Atracurium) injection in prone position. Biosciences Biotechnology Research Asia. 2014, 11(2), pp. 875-878
- Khayati G, Anvari M, Kazemi S. Peanut pod-an inexpensive substrate for β-galactosidase production by Bacillus sp. in solid-state fermentation: Process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Minerva Biotecnologica.2014. 26(4), pp. 301-307
- Mobasseri M, Bahrami A, Zargami N, Aliasgarzadeh A, RhmatiB M, Delazar, A, Agamohmmadzadeh N. Effect of total extract of Urtica dioica on insulin and C-peptide secretion from rat (RIN5F) pancreatic β cells and glucose utilization by human muscle cells. 2010. Iranian Journal of Endocrinology and Metabolism. 11(6), pp. 721-727+743.
- Ansarin K, Niroomand B, Najafipour F., Aghamohammadzadeh N, Niafar M, Sharifi A, Shoja MM. End-tidal CO2 levels lower in subclinical and overt hypothyroidism than healthy controls; no relationship to thyroid function tests. 2011. International Journal of General Medicine. 4, pp. 29-33.
- arassoli A, Shushizadeh MR. Synthesis and characterization of tris[2,3-di(o-oxyphenylene)quinoxalin] cyclotriphosphazene - A novel spiroheterocyclophosphazene. 2003. Phosphorus, Sulfur and Silicon and the Related Elements. 178(4), pp. 803-809.
- Sharifi V, Bakhshaie J, Hatmi, Z, Faghih-Nasiri L, Sadeghianmehr Z, Mirkia S, Mirsharifa SM. Self-reported psychotic symptoms in the general population: Correlates in an Iranian Urban area. 2012. Psychopathology. 45(6), pp. 374-380.
- Ashrafi MR, Salehi S, Malamiri RA, Heidari M, Hosseini SA, Samiei M, Tavasoli AR, Togha M. Efficacy and safety of cinnarizine in the prophylaxis of migraine in children: A double-blind placebo-controlled randomized trial. 2014. Pediatric Neurology. 51(4), pp. 503-508
- Shushizadeh MR, Dalband N. SiO 2/H 2SO 4: An efficient catalytic system for solvent-free 1, 5-benzodiazepines synthesis. 2012. Jundishapur Journal of Natural Pharmaceutical Products. 7(2), pp. 61-64.
- Moradian M. Diagnostic errors in echocardiography: Review of five interesting pediatric cases. 2012. Journal of Tehran University Heart Center. 7(1), pp. 33-36.