

Medicines for Local Therapy of Wounds in the Ukrainian Pharmaceutical Market

Andrii Solomennyi^{1, 2*}, Dmitry Drozdov^{1, 2}, Olexander Shmatenko^{1, 2}, Anna Drozdova^{1,2}, Lena Davtian^{1, 2}, Victoria Shmatenko^{1, 2}

¹Department of Military Pharmacy Ukrainian Military Medical Academy, Kyiv, Ukraine. ²Department of Pharmaceutical Technology and Biopharmacy, Shupyk National Medical Academy of Postgraduate Education, 9 Dorohozhytska St., 04112 Kyiv, Ukraine.

ABSTRACT

The present study conducted marketing research of the Ukrainian pharmaceutical market in the context of analysis of the assortment policy and sale of medicines for the treatment of wounds and wound infections, including as a result of gunshot wounds. The authors used modern research methods: marketing analysis, expert evaluation, graphical method - to objectively evaluate the qualitative and quantitative indicators of the situation of a particular market segment. As a result of expert evaluation of leading experts, it was found that antibiotics are among the leaders in the appointments of doctors from the main groups and make 83.59% of appointments. In the retail segment, antiseptics and disinfectants, NSAIDs and anti-inflammatory drugs, antibiotics (primarily β -lactates), topical painkillers, antihistamines, and infusion therapies have the largest share (before cash segment sales in 2018). Approximately 20% of the drugs are found to be purchased from local and state budgets, the rest are sold through the retail network. In the hospital segment, antibiotics and antiseptics are the leaders, solutions for infusions are more common, and specific anesthesia and opioid analgesics are specific groups.

Key Words: marketing research, sales dynamics, wounds, manufacturing countries, fire inflammation

eIJPPR 2020; 10(4):155-160

HOW TO CITE THIS ARTICLE: Andrii Solomennyi, Dmitry Drozdov, Olexander Shmatenko Anna Drozdova, Lena Davtian, Victoria Shmatenko, (2020). "Medicines for Local Therapy of Wounds in the Ukrainian Pharmaceutical Market", International Journal of Pharmaceutical and Phytopharmacological Research, 10(4), pp.155-160.

INTRODUCTION

Injuries to the extremities by modern types of firearms are manifold, extensive destruction of soft tissues and bones are often damage to the major vessels and nerve trunks, as well as tearing of segments of limbs [1, 2]. The presence of crushed tissues, freely lying bone fragments, blood clots, and soft tissues in the wound, creates favorable conditions for the development of wound infection [3-6].

RESEARCH MATERIALS AND METHODS

Marketing research is aimed to study the structure of prescription medicine, determining the groups of drugs used in the treatment of a defined range of wounds. As well as astreatment policy analysis and sales of drugs used in the treatment of wounds, including as a result of gunshot wounds.

This study examined the appointment of surgeons, traumatologists, and anesthesiologists as specialists, who help the largest number of these patients.

RESULTS AND DISCUSSION

The analysis of the appointment lists showed that 688 medicines were assigned for the period 2014-2019. In 2015, 186 medicines were assigned, and in 2019 - 166 medicines commercial names. The list of drugs most commonly found in appointments listed in Table. **1** [7, 8].

E-mail: Alinasposts @ gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. **Received:** 31 March 2020; **Revised:** 19 August 2020; **Accepted:** 23 August 2020

Corresponding author: Andrii Solomennyi

Address: Department of Pharmaceutical Technology and Biopharmacy, Shupyk National Medical Academy of Postgraduate Education, 9 Dorohozhytska St., 04112 Kyiv, Ukraine .

International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | August 2020| Volume 10| Issue 4| Page 155-160 Andrii Solomennyi, Medicines for Local Therapy of Wounds in the Ukrainian Pharmaceutical Market

r r				
No	The name of t	he medicines in the pr	escription sheets	
• •=	2015 y.	2019 y.	2014 – 2019 y.	
1	Ceftriaxone	Cifran	Ceftriaxone	
2	Dexalgin	Sodium chloride	Betadine	
3	Cifran	Ketanov	Dexalgine	
4	Diclofenac	Betadine	Cifran	
5	Betadine	Flamidez	Ketorol	
6	Ketanov	Methyluracil with	Sodium	
0	Ketanov	miramistine	chloride	
7	Aksef	Ketonal	Ketanov	
8	Sodium	Novocaine	Serrata	
	chloride			
9	t Chlorophilip	Dexalgine	Keiver	
10	Ketorol	Ceftriaxone	Levomekol	
11	Nimid	Chlorgexidene	Movinaza	
12	Ranostop	Keiver	Nurofen	
13	Lorakson	Ciprinol	Aqua for injection	
14	Magnesium sulfate	Levomicol	Ketonad	
15	Amsaf	Depiofen	Chlorhexidine	
16	Dekasan	Taigeron	Ciprinol	
17	Lidocaine	Lidocaine	Ciprolet	
18	Tirozur	Dicloberl	Flamidez	
19	Doksibene	Oflocaine	Nimesil	
20	Dioksizol	Ciprofloxacine	Amsaf	
21	Metrogyl	Serrata	Dimexide	
22	Serrata	Diclack	Ciprofloxacine	
23	Doxicicline	Aqua for injection	Taigeron	
24	Solcoserile	Nurofen	Lidocaine	
25	Diakarb	Ketorol	Ranostope	
26	Flamidez	Liracsone	Novocaine	
27	Cetalgin	Brecsine	Dicloberl	
28	Tiocetam	Decasane	Diclack	
29	Zocsane	DECSpro	Nimid	
30	Glucose	Avinopone	Fastum	

Table 1: List of medicines commonly found in medical prescriptions

Table 1 shows that among the most popular medicines, among medicines are antibiotics (especially cephalosporins and fluoroquinolones groups), nonsteroidal anti-inflammatory medicines (NSAIDs (diclofenac, ketorolac, nimesulide)), antiseptics (chlorhexidine), agents for infusion therapy (atnukozid, Novocaine, lidocaine) are the popular trade names of medicines have changed during the period under review [9].

The structure of assignments by anatomical-therapeutic (ATC) codes of level 1 are given in the Table 2.

Table 2: Assignments structure by ATC of level 1

		Number of
JNO	ATC codes of level 1	assignments,%
1	J general antiinfectives for systemic	22.5907
1	use	22,38%
2	D dermatological	18,41%
3	M musculo-sceletal system	17,88%
4	N nervous system	14,00%
5	B blood and blood-forming organs	10,73%
6	An alimentary tract and metabolism	6,36%
7	R respiratory system	4,68%
8	C cardiovascular system	4,00%
9	V various	0,93%
10	S sensory organs	0,33%
11	G genitourinary system and sex	0.08%
	hormones	0,08%
12	H systemic hormonal preparations,	0,02%
	excl. Sex hormones	

The results of this study showed that most often prescribe medicines from the 5 major groups (J, D, M, N, B) are 83.59% of appointments, are the leaders of antibiotics [10].

The assignments structure for ATC 2-level codes is given in Table 3.

Table 3: Assignments Structure by ATC of level 2

No	ATC of level 2	Number of
51-		assignments,%
1	2	3
1	J01 antibacterials for systemic use	22,53%
2	D08 antiseptics and disinfectants	15,18%
3	M01 antiinflammatory and	13 23%
5	antirheumatic products	13,2370
4	N02 analgesics	9,31%
5	B05 blood substitutes and	7 80%
5	perfusion solutions	7,00%
6	M02 topical products for joint and	5.88%
Ŭ	muscular pain	0,0070
7	R06 antihistamines for systemic	4,22%
	use	, .
8	C05 vasoprotectives	2,70%
9	N01 anesthetics	2,39%
10	A02 drugs for acid related	3.05%
10	disorders	5,05 %
11	B01 antithrombotic agents	1,36%
	A07 antidiarrheals, intestinal	
12	antiinflammatory/antiinfective	1,03%
	agents	
13	D03 preparations for the treatment	1 74%
15	of wounds and ulcers	1,7470
14	J02 antimycotics for systemic use	1,47%
15	V07 all other non-therapeutic	0.98%
15	products	0,9070
16	C04 peripheral vasodilators	0,57%
17	A16 other alimentary tract and	0.37%
1/	metabolism products	0,5770

International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | August 2020| Volume 10| Issue 4| Page 155-160 Andrii Solomennyi, Medicines for Local Therapy of Wounds in the Ukrainian Pharmaceutical Market

18	A03 medicines for functional	0.60%
	gastrointestinal disorders	0,00%
19	R02 throat preparations	0,39%
20	A12 mineral supplements	0,42%
	D06 antibiotics and	
21	chemotherapeutics for	0,44%
	dermatological use	
22	M09 other drugs for disorders of	0.47%
	the musculoskeletal system	0,1770
23	N06 psychoanaleptics	0,27%
24	R05 cough and cold preparations	0,39%
25	S01 ophtalmologicals	0,26%
26	A06 medicines for constipation	0,33%
27	B02 antihemorrhagics	0,23%
28	A14 anabolic agents for systemic	0,20%
	N07 other pervous system	
29	medicines	0,20%
30	A11 vitamins	0,39%
31	A01 stomatological preparations	0,62%
22	D04 antipruritics, incl.	0.1907
52	Antihistamines, anesthetics, etc.	0,18%
33	D07 corticosteroids,	0.15%
55	dermatological preparations	0,1570
34	N05 psycholeptics	0,14%
35	C01 cardiac therapy	0,15%
36	V06 general nutrients	0,08%
37	G01 gynecological antiinfectives and antiseptics	0,09%
38	R01 nasal preparations	0,12%
20	S03 ophthalmological and	0.057
39	otological preparations	0,05%
40	H02 corticosteroids for systemic	0.02%
40	use	0,03%
41	J07 vaccines	0,00%
42	V04 diagnostic agents	0,02%
43	D10 anti-acne preparations	0,00%
44	D11 other dermatological	-
44	preparations	-

At the 2 levels of the ATC classification, more than half of appointments are occupied by 3 groups of medicines antibiotics, antiseptics, and analgesics. Therefore, for the investigated specialties of physicians, the primary task is to stabilize the patient, eliminate pain, and prevent wound infection.

At the 3 levels of ATC classification, medicines from 65 classification groups are used (Table 4).

Table 4: Assignment structure for ATC codes at 3 levels

№	ATC codes at 3 levels	Number of assignments,%
1	D08a antiseptics and disinfectants	16%
2	M01a antiinflammatory and	16%

	antirheumatic products, non-steroids	
3	J01d other beta-lactam antibacterials	10%
4	N02b other analgesics and antipyretics	10%
5	M02a topical products for joint and muscular pain	7%
6	R06a antihistamines for systemic use	4%
7	B05b i.v. solutions	4%
8	A02b medicines for the treatment of peptic ulcer and gastro-oesophageal reflux disease	3%
9	C05c capillary stabilizing agents	3%
10	J01f macrolides, lincosamides, and streptogramins	2%
11	D03a cicatrizants	2%
12	J01x other antibacterials	2%
13	J01c beta-lactam antibacterials, penicillins	2%
14	J01m quinolone antibacterials	2%
15	N01b anesthetics, local	2%
16	J02a antimycotics for systemic use	2%

Medicines are purchased at the patients' own expense (pharmacy retail sales) and from the state and local budgets (hospital sales). The retail segment is over 80% in cash.

In the retail segment, antiseptics and disinfectants, NSAIDs, and anti-inflammatory medicines, antibiotics (primarily β -lactates), topical painkillers, antihistamines, and infusion therapy solutions account for the largest share (before cash segment sales in 2018).

Antibiotics and antiseptics also lead in the hospital segment, infusion solutions, and specific anesthesia and opioid analgesics are the most common (Table 5).

 Table 5: The structure of prescriptions medicines by

 ATC codes 3 levels of hospital segment

	-	0
№	ATC codes of 3 levels	Number of
		assignments,%
1	J01d other beta-lactam	27%
1	antibacterials	2170
2	B05b i.v. solutions	19%
2	D08a antiseptics and	1107
3	disinfectants	1170
4	N02b other analgesics and	5%
4	antipyretics	5%
5	N01b anesthetics, local	4%
6	J01x other antibacterials	4%
	M01a antiinflammatory and	
7	antirheumatic products, non-	3%
	steroids	
8	R06a antihistamines for systemic	30%
	use	5 /0
9	J01m quinolone antibacterials	3%
10	B05x i.v. solution additives	3%

International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | August 2020| Volume 10| Issue 4| Page 155-160 Andrii Solomennyi, Medicines for Local Therapy of Wounds in the Ukrainian Pharmaceutical Market

11	A02b medicines for the treatment of peptic ulcer and gastro-oesophageal reflux disease	2%
12	N02a opioids	2%

In the next phase of research, we analyzed the retail pharmacy sales of medicines used in the treatment of exposed wounds, including as a result of gunshot wounds. Table. 6 shows the TOP 30 of 128 medicines with International Non-proprietary Names (INN) according to the appointments of surgeons, traumatologists, and anesthetists (for 2018) [8, 10].

Table 6: TOP 30 medicines for INN

No	ATC codes of 3 levels	Number of
. 1 ≌	ATC codes of 5 levels	assignments,%
1	Metamizolum natricum	10,00%
2	Ceftriaxonum	8,37%
3	Hydrogenii peroxidum*	6,20%
4	Diclofenacum	6,19%
5	Ibuprofenum	4,83%
6	Omeprazolum	3,32%
7	Iodum*	3,06%
8	Benzocainum+mentholum*+procainum	2,94%
9	Nimesulidum	2,48%
10	Chlorhexidinum	2,40%
11	Azithromycinum	2,18%
12	Loratadinum	2,09%
13	Ketorolacum	1,74%
14	Dextrosum*	1,68%
15	Fluconazolum	1,66%
16	Spiritus aethylicus*	1,63%
17	Methyluracilum*+chloramphenicolum	1,43%

18	Metronidazolum	1,42%
19	Diphenhydraminum	1,40%
20	Acidum acetylsalicylicum*	1,38%
21	Lidocainum	1,38%
22	Viride nitens*	1,30%
23	Meloxicamum	1,23%
24	Amoxicillinum	1,13%
25	Aqua pro injectionibus*	1,02%
26	Levofloxacinum	0,99%
27	Dexketoprofenum	0,99%
28	Amoxicillinum+acidum clavulanicum	0,97%
29	Magnesii sulfas*	0,92%
30	Ciprofloxacinum	0,87%
-		

It has been proven that in the analysis of pharmacy sales, the above-mentioned medicines are used in addition to the the treatment of open and gunshot wounds. However, as well as the structure of medical prescriptions, it is shown that antibiotics (beta-lactams, fluoroquinolones, and macrolides), antiseptics (hydrogen peroxide, solution of brilliant green, iodine, chlorhexidine), NSAIDs (diclofenac, ibuprofen, ibuprofen, mediproxen, ibuprofen, ibuprofen, ibuprofen), anesthetics (lidocaine, novocaine) and so on.

Dynamics Analysis of sales of the top 30 medicines (Fig. 1) by INN (in the packs) shows a tendency to reduce metamizole sales and the growth of ibuprofen and nimesulide. The sales dynamics of Diclofenac remain unchanged.

Among the antiseptic group, sales of hydrogen peroxide remained unchanged, while at the same time sales of green diamond and iodine have decreased. Among antibiotics, increased cephalosporins position and some extent macrolides have lost the selling position of penicillins [5].

Figure 1: Sales Dynamics charts of the top 30 INN in packages

As of December 2019, domestic medicines account for more than two-thirds of sales (in packs) in the analyzed segment (Fig. 2).

Figure 2: Particle diagram of domestic and imported drugs in the unitary enterprise

By 2014, imported medicines were increasing packaging sales. After the crisis of the 2014 and the rapid increase of the hryvnia exchange rate, their sales in packaging have

declined somewhat, only in recent years the upward trend has resumed (Fig. 3).

Figure 3: Dynamics charts of sales of domestic and imported drugs in the unitary enterprise

In the segment of agents used to treat open wounds and gunshot wounds from 2008 to 2018 represented 267 manufacturers. Since 2018, only 104 manufacturers had more or less significant sales, with 22 manufacturers providing 85% of the segment's packaging needs (Fig.4).

Figure 4: Dynamics diagrams of manufacturers particles in a unitary enterprise

From the analysis of the data, Fig. 4 shows that the top ten are domestic manufacturers, which generally account for approximately 65% of sales of the studied segment. At the same time, the share of most of them remains

unchanged or increases (Yuriy Pharm, manufacturer of infusion solutions), except PJSC Health (Kharkiv).

Between 2008 and 2019, up to 900 trade names of medicines were used to treat open wounds, including as a result of gunshot wounds. As of Q3 2019, there were 473 active medicines in the active segment.

In the next stage of the study, sales of individual therapeutic groups were analyzed. Yes, antibiotic segment accounts for 15.6% of total sales of the investigated segment. The antibiotic segment includes 142 medicines from different manufacturers and includes cephalosporin agents (1-4 generations), fluoroquinolones (2-3)generations), individual penicillins, and macrolides. Also antimicrobial agents of the imidazole derivatives group are ornidazole and metronidazole. As well as tobramycin and sulfanilamides, lincomycin and doxycycline. Leading positions are taken by ceftriaxone from various manufacturers [3, 4, 10].

CONCLUSION:

It is found that approximately 20% of the medicines are purchased from local and state budgets, the rest are sold through the retail network. Antibiotics have the highest generation share (primarily, 3rd cephalosporins, fluoroquinolones, imidazodine derivatives, etc.), NSAIDs for oral, parenteral, and topical use (ketorolac, diclofenac, ibuprofen, nimesulide, etc.), anesthetics (lidocaine, zirconium, and lidocaine), chlorhexidine, decasan, miramistin), infusion solutions (glucose, isotonic sodium chloride solution, reosorbylact, Ringer's solution, etc.). A certain proportion (even in the retail segment) is occupied by anesthesia, opioid analgesics, anticoagulants, proton pump inhibitors, parenteral nutrition, serratiopeptidase, actovegin, and solcoseryl, calcium, as well as a number of topical antibiotics, wound healing products.

REFERENCES

- Kalantarzadeh ZA, Dehcheshmeh NF, Haghighizadeh MH, Mohammadi P. Analyzing the Cost of Care for Burn Injuries and Its Determinants in a University Hospital for Accidents and Burns. Entomology and Applied Science Letters. 2020 Jan 12;6(4):18-24.
- [2] Hassan EA, Alhadidy AE, Elgohary T, Farouk KH, Henein A. Effect of targeted temperature method on the ICU length of stay for traumatic severe brain injury patients. Journal of Advanced Pharmacy Education & Research Jan-Mar. 2019;9(1).
- [3] Kotelnikov, G. P., Mironov, S. P. Traumatology: a national guide / ed. GE`OTAR-Media, 2016.
- [4] Vysochina, L. V., Kleimenov, V. N., Sinyushkinidr, A. I., Romanchova, M. G. Fundamentals of preventive medicine and first aid:

Uchebnoeposobiye, Kaliningr. un-t. - Kaliningrad, 2015

- [5] Samurai, B. A. The first pre-medical aid. 2015.
- [6] Ashjaran A, Sheybani S. Drug Release of Bacterial Cellulose as Antibacterial Nano Wound Dressing. Int. J. Pharm. Res. Allied Sci. 2019;8(3):137-43.
- [7] Davtian, L. L., Korytniuk, R. S., Voitenko K, Kh. M. Basic fashion development of the pharmaceutical market of Ukraine by pharmacotherapeutic groups / Edited by. Education of Ukraine, 2015. 130 p.
- [8] Vlasenko I. O. Comparative analysis of the market of dermatological medicinal plants in Ukraine for 2013 and 2018, I. O. Vlasenko, L. L. Davtian, Collection of scientific works of NMAPO employees. P. L. Shupik. - 2018. - Vip. 29. - P. 194-205.
- [9] Evrilia SR, Muhtadi A, Barliana MI, Winarni R. An evaluation of Ceftriaxone use in the antimicrobial stewardship program for surgical patients at a Hospital in Bandung. J. Adv. Pharm. Educ. Res. 2019;9(1):53-6.
- [10] McCleskey S. When free markets fail: Saving the market when it can't save itself. John Wiley & Sons; 2010 Jul 16.

160