Vitex negundo: Medicinal Values, Biological Activities, Toxicity Studies and Phytopharmacological Actions

Kambham Venkateswarlu
Sri Lakshmi Narasimha College of Pharmacy, Chittoor-517132, A.P, India.

Received on: 19/10/2012 Accepted on: 28/10/2012

ABSTRACT
In recent times, focus on plant research has increased all over the world and a large body of evidence has collected to show immense potential of medicinal plants used in various traditional systems. Over the last few years, researches have aimed at identifying and validating plant derived substances for the treatment of various diseases. Similarly, it has been already proved that various parts of plants such as leaves, fruits, seeds etc. provide health and nutrition promoting compounds in human diet. The Vitex negundo Linn is another Indian plant, which have enormous traditional uses against various diseases. The present review aims to compile medicinal values of Vitex negundo generated through the research activity using modern scientific approaches and innovative scientific tools.

Key Words: Vitex negundo, Pharmacological Activities, Medicinal Values, Nirgundi.

INTRODUCTION
Medicinal plants have been a major source of therapeutic agents since ancient times to cure human disease. The revival of interest in natural drugs started in last decade mainly because of the wide spread belief that green medicine is healthier than synthetic products. Now-a-days, there is manifold increase in medicinal plant based industries due to the increase in the interest of use of medicinal plants throughout the world which are growing at a rate of 7-15% annually. Despite the major advances in modern medicine, the development of new drugs from natural products is still considered important. Traditional therapeutics based on herbal medicinal principles is time tested and widely accepted across various cultural and socioeconomic strata. However, there is lack of precise guidelines to study the herbal compounds and till date a very meagre portion of this tremendous potential drug-repertoire has been scientifically screened. Hence, there is a real need for scientific evidence based validation of these agents. The evaluation of plant products on the basis of medicinal and therapeutics forms a platform for the discovery of newer drug molecules from different plant sources. From the innumerable plants being researched since time immemorial, Vitex negundo is important one. This plant of Verbenaceae family is commonly known as Nirgundi (Hindi) and five leaved chaste tree (English). Vitex negundo L. (Sambhalu) is an aromatic large shrub or small slender tree of about 3 meter in height with quadrangular branches.

It is found in moist area, often on banks of rivers, throughout India, up to an altitude of 1500 meter, also grown in Mediterranean countries and Central Asia. Various medicinal properties are attributed to it particularly in the treatment of anti-inflammatory, fungal diseases, antioxidant and hepatoprotective disorders. Vitex negundo, commonly known as the five-leaved chaste tree (Fig.1, 2 and 3). Herbal remedies are a type of alternative medicine that originates from plants and plant extracts. Used to heal illnesses and disease and to address psychological concerns, herbal remedies have been around for centuries and were the precursor to modern medicine. Herbal remedies are obtained from a wide variety of natural resources including plant leaves, bark, berries, flowers and roots.

Herbal medicine remains a popular alternative throughout China and the Far East and is growing in popularity throughout the United States. Botanicals have been used traditionally by herbalists and indigenous healers worldwide for the prevention and treatment of liver disease. Clinical research in this century has confirmed the efficacy of several plants in the treatment of liver disease. Basic scientific research has uncovered the mechanisms by which some plants afford their therapeutic effects. In recent years many researchers have examined the effects of plants used traditionally by indigenous healers and herbalists to support liver function and treat diseases of the liver. In most cases, research has confirmed traditional experience and wisdom by discovering the mechanisms and modes of action of these plants as well as reaffirming the therapeutic effectiveness of certain plants or plant extracts in clinical studies.
The plant occurs in Bengal, Southern India and Burma also.

Cough, malarial fever, haemorrhoids, dysmenorrhoea, colic, rheumatism, leprosy, verminosis, flatulence, febrifuge and expectorant, antidote to snake venom. The root is considered tonic, biliousness, painful teething of children. The root is an astringent.

The plant has pungent, bitter, acrid taste; heating, astringent, and dry. It is common in waste places around villages, river banks, moist localities and in the deciduous forests.

It is common throughout India from coastal belt to subtropical Western Himalayas and Andaman Islands, abundant in drier zones. It is particularly found in Karnataka and Tamilnadu (Wild as well as cultivated).

The flowers contain many stamens. Fruits resemble wood apple. The tender shoots and leaves are quite brittle.

Special Characters
Branchlets have prominent auxiliary spines and leaflets possess numerous minute glad dots. The fragrant white flowers contain many stamens. Fruits resemble wood apple. The tender shoots and leaves are quite brittle.

Powder Characters
Grey to grayish-brown; thick-walled, angular cells of cork., numerous prismatic crystal of calcium oxalate, crystal fibres, starch grains simple, 5-19 µ India, mostly round to oval with cetric hilum; compound starch grains having 2-3 components, fragments of xylem vessels with bordered pits and thick-walled xylem fibres.

PLANT COLLECTION
The leaves of Vitex negundo Linn. which predominantly is a habitat in arid places were collected from Uthamaseeli, Near Kallanai Dam, Tiruchirappalli district, Tamil Nadu, India during the month of December-January.

Mode of Propagation: By seeds and grafts.

MEDICINAL USES
Roots, Bark, Leaves and fruits are highly medicinal. Roots are one of the ingredients of the drug Dasmula arista; used in dyspepsia, colic, rheumatism, worms, boils and leprosy. Fruit is nervine, cephalic and emmenagogue; dried fruits acts as a vermifuge; flowers are cool and astringent.

Ripe Fruits: Nutritious, cooling, used in treating indigestion and to improve vision.

THE PLANT
A large shrub or sometimes a small slender tree; bark thin, grey; branchlets quadrangular, whitish with a fine tomentum. Leaves 3-5 foliate; leaflets lanceolate, acute, the terminal leaflet 5-10 by 1.6-3.2 cm. with a petiole 1-1.3 cm. long, the lateral leaflets smaller with a very short petiole, all nearly glabrous above, covered with a fine white tomentum beneath, base acute; common petioles 2.5-3.8 cm long.

Flowers in pedunculate branched tomentose cymes, opposite along the quadrangular tomentose rachis of a large terminal often compound pyramidal panicle (axillary peduncles in the upper axes sometimes present); bracts 1.5-2.5 mm long, lanceolateacudeus. Calyx 3 mm long, white tomentose; teeth triangular, 0.8-1 mm long. Ovary glabrous; style glabrous; stigma forked. Drupe less than 6 mm diameter, black when ripe.

The plant has pungent, bitter, acrid taste; heating, astringent, stomachic, anthelmintic; promotes the growth of hair; useful in disease of the eye, consumption, inflammation, leucoderma, enlargement of the spleen, bronchitis, asthma, bilioussness, painful teething of children. The root is an antitope to snake venom. The root is considered tonic, febrifuge and expectorant, otalgia, arthritis, dyspepsia, colic, rheumatism, leprosy, verminosis, flatulence, dysentery, urinary disorders, wounds, ulcers, bronchitis, cough, malarial fever, haemorrhoids, dysmenorrhoea, leprosy, skin diseases and general debility. The plant is reported to have expectorant, carminative, digestive, anodyne, anti septic, alterant, antipyretic, diuretic, emmenagogue, depurative, rejuvenating, ophthalmic, vulnerary and tonic.

The leaves are aromatic, tonic and vermifuge. A decoction of Nirgundi leaves is given with the addition of long pepper in catarhal fever with heaviness of head and dullness of hearing. A pillow stuffed with the leaves of Nirgundi is placed under the head for relief of headache. The juice of the leaves is said to have the property of removing foetid discharges and worms from ulcers. The flowers are useful in diarrhoea, cholera, fever, haemorrhages, hepatopathy and cardiac disorders. Leaves and bark are useful in scorpion stings, seeds are considered useful in eye diseases in form of anjan.

Tincture of root bark in 1 to 2 dr. doses is recommended in cases of irritable bladder and of rheumatism. Powdered root is prescribed for piles as a demulcent for dysentery. Root is used in dyspepsia, colic, rheumatism, worms, boils and leprosy.

The leaves are discint and are useful in dispersing swelling of joints from acute rheumatism and of the testes from suppressed gonorrhoea. The dried fruit acts as a vermifuge. Fruit is nervine, cephalic and emmenagogue; dried fruits acts as a vermifuge; flowers are cool and astringent.

The flowers are aromatic, tonic and vermifuge.
CHEMICAL CONSTITUENTS
Leaves contain an alkaloid nishidine, flavonoids like flavones, luteolin-7-glucoside, casticin, iridoid glycoside, an essential oil and other constituents like vitamin-C, carotene, benzoic acid, β-sitosterol and C-glycoside (Hussain et al., 1992).

Stem bark yields leucoanthrocyanidins (Hussain et al, 1992; Chopra et al, 1956).

N.K. Basu et al. (1944), G.S. Gupta et al. (1973) and V. Joshi et al. (1974), reported isolation of n-Triteriacontane, n- hentriacontanol, n-hentriacontane, n-pentaccontane, n- nonacosane, β-sitosterol, phoxybenzoic acid and 5- oxyisophthalic acid; 3, 4- dihydroxybenzoic acid was also isolated from the seeds of *Vitex negundo*.

U.K. Rao (1977) reported isolation of friedelin, vitamin-C, carotene, casticin, artemin from leaves. G.S. Misra & P.M. Subramanian (1980) isolated three new flavones glycosides which were identified as 3,6,7,3',4'- Pentamethoxy-5-Glucopyranosyl- rhamnoside, vitexin caffeate, 4'-O-methyl myricetin- 3-O-[4''-O-β-D- galactosyl]-β-D-galactopyranoside.15-18

G. Gu et al. (1986) proved the presence of four lipids lionleic acid, oleic acid, stearic acid, palmitic acid in *Vitex negundo*.14

S. Li et al. (1987), S. Chandra et al. (1987), J. Banerji et al. (1988), P.T. Kosankar et al. (2000) reported from the leaves and twig of *Vitex negundo*, a stillbene derivative, characterised as 4,4'- dimethoxy-trans-stilbene, along with five flavones, 5,6,7,8,3',4'-heptamethoxy, 5-hydroxy-6,7,8,3',4'-pentamethoxy (5- O-desmethylnobiletin), 5-hydroxy-6,7,8,3',4'-5-hexamethoxy (gardenin A), 5-hydroxy-6,7,8,4'-tetramethoxy (gardenin B) and 5-hydroxy-7,3',4',5'-tetramethoxyflavone (corymbosin).15-18

Kuo-Chung et al. (1989), J. Leopold et al. (1998), A.K. Singh et al. (2004) and Song-Fa Wang et al. (2004) reported isolation of terpinen-4-ol, α-terpineol, sabine, globulol, spathulenol, β-farnesene, farnesol, bis (1,1dimethyl methylphenol, α-pinene, β- pinene, linalool, terpinyl acetate, Caryophyllene epsilon, Caryophyllenol along with viridiflorol.19,22 Pradeep Singh et al. (2010) proved the presence of volatile oil which contains ten volatile components like α-copaene, β-caryophyllene, β-elemene, camphene, α-thujene, α-pinene, sebinol, linalool, stearic acid and behenic acid.21

A.S. Chawla et al. (1992) and D.S. Hebbalkar et al. (1992) reported triterpenoids 3β-acetoxyolean-12-en-27-oic acid, 2α,3α- dihydroxyoleana-5,12-dien-28-oic acid, 2β,3α- diacetoxyoleana-5,12-dien-28-oic acid and 2α,3β- diacetoxy-18-hydroxyoleana-5,12-dien- 28-oic acid.32,33

A.S. Chawla et al. (1992) and M. Ono et al. (2004) isolated a new phenylidronaphthalene-type lignan, vitedoin A, a new phenylnapthalene-type lignan, videoamine A and a new trinorlabdone-type diterpene, vitedoin B from the seeds of *Vitex negundo* along with five known lignin derivatives. Their chemical structures were determined mainly on the basis of NMR and MS data.34,35

The studies of M.F. Dariyat et al. (1994), revealed a four iridoids in the pharmacologically-active fraction of the leaves of *Vitex negundo* L. which were identified as 2'- phydroxybenzoyl mussaenosiacid, agnuside & lagundinin. The data obtained for 2'-hydroxybenzoyl mussaenosic acid modifies a previous assignment while lagundinin is a newly identified iridoid. Three of the iridoids contain glucosyl and π-hydroxybenzoc acid moieties. In addition to the four iridoids which were reported, two other iridoids were known to occur in the leaves of *Vitex negundo*, aucubin and nishindaside.36

J.A. Rideout et al. (1999) from the chloroform extract of *Vitex negundo* leaves performed the structure elucidation of vitexilactone and casticin. This is first report on the isolation of vitexilactone from *Vitex negundo*, its structure elucidation by NMR. Casticin was earlier reported as a constituent of V. negundo.37

V. Krishna et al. (2002) isolated β-amyrin, epifriedelinol and oleanolic acid from the heartwood of *Vitex negundo*.38

V. Singh et al. (2003) isolated the twelve pure compounds, namely viridiflorol, squalene, 5-hydroxy-3,6,7,3',4'- pentamethoxy flavone, 5-hydroxy-3,7,3',4'-4-tetramethoxy flavones, 5,3-dihydroxy-7,8,4' trimethoxy flavonan, p-hydroxybenzoic acid, 3,4-dihydrobenzoic acid, luteolin 7-glucoside, isoorientin, agnuside and 2'-phydroxybenzoyl mussaenosic acid and characterized by spectral data (UV, IR, NMR, & MS) from the different leaf extracts. Squalene is reported for the first time from the V. negundo leaves. This is the first report of the isolation of squalene from the leaves.39

F. Diaz et al. (2003), revealed the known flavones vitexicarpin, methylated, acetylated and six new acylated derivatives, identified as 3'-Benzyloxy-5-hydroxy-3,6,7,4'-tetramethoxy flavone, 5,3'-Dibenzoxyloxy-3,6,7,4'-tetramethoxy flavone, 5,3'-Dipropanoxyloxy-3,6,7,4'-tetramethoxy flavone, 5,3'-Dibutanyloxy-3,6,7,4'- tetramethoxy flavone, 5,3'-Dipent-4-enoxyloxy-3,6,7,4'- tetramethoxy flavone, 5,3'-Dihexanyloxy-3,6,7,4'- tetramethoxy flavone from the chloroform extract of the leaves of *Vitex negundo*.40

R. D. Manohar et al. (2003) proved the presence of two pentacyclic triterpenoids, betulinic acid (3β-hydroxylup-20-(29)-en-28-oic acid) and ursolic acid (2β-hydroxyurs-12-en-28-oic acid) from *Vitex negundo* leaves along with three other compounds; an aliphatic alcohol n-hentriaconitool, p-hydroxybenzoic acid.41

A. Haq et al. (2004), R. Dayal et al. (2004) from the root of *Vitex negundo* isolated Vitexoside a new flavonoid glycoside and agnuside, R-dalbergiphenol.42, 43

A. Malik et al. (2006) from the methanolic extracts of the roots isolated eight lignans, identified as negundin A, negundin B, 6'- hydroxy-4'-4-hydroxy-3-methoxy-3 hydroxymethyl-7-methoxy-3,4-dihydro-2-napthaldehyde, Vitrofetal E, (+)-lyoniresinol, (+)-lyoniresinol-3a-O-β-D-glucose, (+)-3a-O-β-D-glucose, (+)-3′-1′-Meo-resinol and (+)-diasynigaresinol.44

R. Maurya et al. (2007) from the ethanol extract of the leaves of *Vitex negundo* resulted in the isolation of new
flavones glycoside along with five known compound and characterized as 4′,5,7′- trihydroxy-3′-O-β-D-gluconic acid-6′-methyl ester, a new naturally occurring compound named vitexoside.55

Vanillic acid, p-hydroxybenzoic acid and luteolin were isolated from bark; two new leucoanthocyanidins isolated from stem bark and their structures were determined as 6,8-di-O-methylleucocyanidin-7-Orhamnoglucoside.

The roots contain a furanoeremiphiline. The stem bark contains methyl esters of leucodelphinidin, and leucoanthocyanidins-7-Orhamno- glucoside and the flavonoids, 6-C-glycosyl-5-Orhamnopyranosyl trimethoxy wogonin and acerosin-5-glucoside monoacetate and also flavonoids, 6β-glucopyranosyl-7- hydroxy-3′,4′,5′,8-tetramethoxyflavone-5-O-α-Lrhampopyranoside; 3′,7-dihydroxy-4′,6,8 trimethoxy flavone-5-O-(6′-O-acetyl-β-D-glucopyranoside);3′,3′,4′,6,7-pentamethoxyflavonol-5-O-(4′O-β-D-glucopyranosyl)-α- Lrhamnopyranoside;4,5,7-trihydroxyflavone-8-(2′-caffeoyl-β Dglucopyranoside); and 3,5,5,7-tetrahydroxy-4-methoxyflavone-3-O- (4′-O-β-galactopyranosyl) galactopyranoside.

The leaves contain the iridoid glycosides, 2-p-hydroxybenzoyl mussaenosidic acid, 6′- p-hydroxybenzoyl mussaenosidic acid, neugnugoside (C23H28O12), and nishindaside (C15H24O9). They also contain the isomeric flavonones, 5,3-dihydroxy-7,8,4′(C23H28O12), and nishindaside (C15H24O9). They also contain the isomeric flavanones, 5,3-dihydroxy-7,8,4′-trimethoxy flavanone and 5,3-dihydroxy-6,7,4′-trimethoxy flavanone. Besides, they contain casticin and the glucosides, leutolin-7-glucoside (C21H20O11) and α-D-glucoside of a tetrahydroxy monomethoxy flavone (C22H24O12, m.p. 2450). The leaves and twigs contain 5,3′-dihydroxy-6,7′,4′-trimethoxy flavone (m.p.135-1360), 3′,4′,5′,5′,6,7,8-heptamethoxyflavone, 3-O-desmethyllumaretetemin, 5-Odesmethylnobiletin. The seeds contain 5-oxyisophthalic acid and vitextriterpine (C30H50O8). Several anti-inflammatory substances have also been isolated from the seeds including the diterpene, 5β-hydroxyl-8,11,13-abietatrien-6α-ol; the triterpene, lanostan-8, 25-dien-2β, 3α-dihydroxyole-5,12-dien-28-oic acid, 2α, 3α-dihydroxyole-5,12-dien-28-oic acid, 2β, 3α-diacetoxyole-5,12-dien-28-oic acid, 2α,3β-diacetoxy-18-hydroxyole-5,12-dien-28-oicacid (m.p. 205-2060); the Flavonoid, artemetin; and the lignan characterized as 6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-3,4-dihydro-2-naphthaldehyde (C42H30O6, m.p. 247-248).56-58

Properties and Action

Rasa: Madhura, Laghu

Virya: Sita

Karma: Mutrala, Tridosaghna

Important Formulation

- Manasa Mitra Vataka, Amratarista, Dantyadyarista, Agastya Haritak, Rasayana, Dasamularista, Dasamula Kwatha Churna, Bilvadi Letha.4 *Ayurvedic formulations*
- Vatavyadhi, Sotha, Sula, Agnimandya, Chardi, Mutrakreeha, Amavata.

Pharmacological Actions

Analgesic Activity

Ravishankar et al (1985, 1986) found that interperitoneal administration of some leaf and root extracts using different solvents showed analgesic activity. M.G. Dharmasiri et al. (2003) evaluated analgesic activity from the aqueous extract of fresh leaves of *Vitex negundo* in female Wistar rats using hot plate, tail flick and formalin tests. The standard drug used in hot plate and tail flick was aspirin (100 mg/kg).59

Anti-inflammatory Activity and Anti arthritic Activity

The experimental studies using various animal models have demonstrated that different parts of plant especially leaves, fruits, roots and seeds possess anti-inflammatory and antiarthritic activity (Chaturvedi & Singh, 1965; ravishankar et al, 1985, 1986; Chawla et al, 1991; Tamhankar & Saraf, 1994; Jana et al, 1999).

M.G. Dharmasiri et al. (2003) investigated anti-inflammatory activity from the aqueous extract of *Vitex negundo* leaves in Wistar rats (male) using carrageenan-induced & formaldehyde-induced rat paw oedema using indomethacin as standard. The early phase of carrageenan-induced rat paw oedema was significantly suppressed in an inversely dose-dependent manner.64 R.K. Gupta et al. (2006) reported anti-inflammatory activity from the ethanolic extract of *Vitex negundo* leaves in albino rats (of either sex) using carrageenan-induced rat paw oedema and cotton pellet granuloma models using phenylbutazone (10-100 mg) and ibuprofen (10-200 mg) as standards.65 Pradeep Singh et al. (2009) reported anti-inflammatory activity of ethanolic extract of roots.

Antihyperpigmentation Activity

A. Malik et al. (2006) investigated tyrosinase inhibitory potential of lignans isolated from the methanolic extract of *Vitex negundo* roots using SpectraMax 340 microplate reader.66

Immunostimulatory Activity:

D.D. Singh et al. (2005) reported immunostimulatory activity from the extracts of *Vitex negundo* in oxyburst phagocytic assay using human polymorph nuclear cells.67 J.L. Suri et al. reported immunostimulatory potential of two iridoid glucosides from *Vitex negundo* leaves.68

Hepatoprotective Activity

A. Prabhakar et al. investigated hepatoprotective activity of *Nagundoside* & agundoside from *Vitex negundo*. Both compounds were used in combination with one or more pharmaceutical additives which prevent and treat hepatic diseases.69
CNS Activity:
M. Gupta et al. (1997 & 1999) evaluated CNS activity & anticonvulsant activities of petroleum ether & methanolic extracts of Vitex negundo in mice. 74, 75

Anti-androgenic Activity
S.K. Bhargava (1984, 1986) & R.P. Samy et al. (1998) reported antiandrogenic activity of various flavonoids from the seeds of Vitexnegundo. The flavonoids which shows estrogenic properties as well as anti-implantation activities are 5, 7, 3’- trihydroxy and 6, 8, 4’- trihydroxy flavones. 76-80

Enzyme Inhibition Activity
A.Haq et al. (2004) reported anti-lipoygenase and anti-butyrylcholinesterase potential of two lignans Negundin B and Vitrofolal F. 81

Mosquito repellent Activity
P.K. Amancharla et al. (1999) tested mosquito repellent activity of aqueous extract of Vitex negundo leaves. A new chemical ‘rotundial’ was tested for the said activity. 82

Anticonvulsant Activity
The petroleum and butanol leaf extract have shown protection, whereas, none of root extract has shown protection against maximal electroshock (MES) seizures. Petroleum root extract could only provide protection against Leptazole induced convulsions (Raviahnkar et al, 1985, 1986) 83-88 whereas methanolic leaf extract showed significant protection against Strychnine and Leptazole induced convulsions (Gupta et al, 1999) 79.

Antioxidant Activity

O.P. Tiwari & Y.B. Tripathi (2007) evaluated antioxidant property of different fractions of Vitex negundo by employing various invitro systems, such as 2, 2’-azino-bis-3-ethyl benzothiazoline-6-sulfuric acid (ABTS), Lipid peroxides (LPO), Superoxide, Hydroxyl radical scavenging and iron chelation. Total antioxidant capacity was determined by the assay based on the performed radical monocation ABTS. LPO was assessed in terms of thiobarbituric acid reactive substances by using egg yolk homogenates as lipid rich media. 73

Insecticidal and Pesticidal Activities
The plant products of V.negundo are variously reported to possess insecticidal activity against stored product pests, mosquito larvae, house flies and tobacco leaf eating larvae. Leaf oil of the plant is shown to have repellent action against stored product pests (Deshmukh et al, 1982; Prakash & Mathur, 1985; Hebbalkar et al, 1992).

TOXICITY
Preliminary acute toxicity study of ethanolic leaf extract in albino rats by oral route carried out by Tandon and Gupta (2004) indicated it to be practically nontoxic, as its LD₅₀ dose recorded was 7.5 g/kg/wt. The stomach showed no histomorphological changes in any of the doses of the extract studied. However, dose dependent histomorphological changes were observed in the specimens of the heart, liver and lung. 77

RECOMMENDED DOSAGE
Almost all its parts like leaves, roots, bark, fruits, flowers and seeds are employed for medicinal purpose and can be used medicinally in the form of powder, decoction, juice, oil, tincture, sugar/water/honey paste, dry extract. Doses recommended, in adults are : juice 10-20ml; decoction, 50-100ml; leaves powder, 1.5-3g; dry leaves extract, 300-600mg (Chaudhary, 1996).

CONCLUSION
V. negundo possesses numerous biological activities proved by many experimental studies. It represents a class of herbal drug with very strong conceptual base for its use. Thus, this plant has great potential to be developed as a drug by pharmaceutical industries, but before it recommending it for clinical use in these conditions, there is a need to conduct clinical trials and prove its clinical utility.

Medicinal plants, which are the backbone of traditional medicine, have in the last few decade been the subject for very intense pharmacological studies; the value of medicinal plants as potential sources of new compounds of therapeutics value and as sources of lead compounds in the drug development. There arises a need therefore to screen medicinal plants for bioactive compounds as a basis for further pharmacological studies. According to the thorough study of the available literature it is quite obvious that the importance of Nirgundi in traditional system of medicine is of utmost significance. Almost all parts of the plant are use in preparing herbal medicines. The plant is known to possess anticancer, antimicrobial, antifeedant, anti-inflammatory, antihyperpigmentation, hepatoprotective, antihistaminic, analgesic and related activities. Scientifically explored exhaustive reports of the plant, their medicinal properties and active chemical constituents have a role in the management of various human ailments. This review attempts to encompass the available literature on Vitex negundo with respect to its traditional uses, chemical constituents and summary of its various pharmacological activities.

Fig.1- Vitex negundo: Stem with leaves
REFERENCES

9) Basu NK, Singh GB. A Note on the Chemical Investigation of *Vitex* *negundo* L. The Indian Journal of Pharmacy 1944; 6, 71-74.

48) Rastogi RP, Mehrotra BN. Compendium of Indian medicinal plants. CDRI (Central Drug Research Institute, Lucknow) and NISCAIR (National institute of science communication and information resources, New Delhi), 2006; Vol.2, p.704
49) Rastogi RP, Mehrotra BN. Compendium of Indian medicinal plants. CDRI (Central Drug Research Institute, Lucknow) and NISCAIR (National institute of science communication and information resources, New Delhi), 2004; Vol.3, p. 676-678.

*Corresponding Author: Kambham Venkateswarlu, Sri Lakshmi Narasimha College of Pharmacy, Chittoor-517132, A.P, India. Email: k.v.reddy9441701016@gmail.com