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ABSTRACT 
Structural computer-aided design of drugs is an effective modern way of creating targeted drugs. The essence 
of the method is to use intermolecular docking programs to select a ligand with a high affinity for the target 
protein. In the present study, we used the example of the search for ligands for the nonselective cationic channel 
TRPM8 to propose a two-step strategy based on deep neural networks and further verification by 
intermolecular docking. The strategy consists of using a neural network to screen out potential drug candidates 
and thereby reduce the list of candidate ligands for verification by intermolecular AutoDock program, which 
allows assessing the protein's affinity for the ligand by the minimum binding energy and identifying possible 
ligand conformations upon binding to certain centers of the protein, namely Y745 (Tyr 745 - critical center for 
TRPM8), R1008 (Phe 1008), and L1009 (Ala 1009). 8 from the ten potential ligands predicted by the neural 
network revealed minimum binding energy and a greater number of conformations in comparison to the classic 
TRPM8 ligand, menthol when verified by the AutoDock program. 2 ligands failed to dock, which may be due to 
insufficient allocated memory of the compute for successful docking or other technical problems. The proposed 
strategy is universal and will accelerate the search for ligands for various proteins.  
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INTRODUCTION 

Structural computer-aided design of drugs is widely used 

now for creating targeted drugs [1]. The method consists of 

exploiting intermolecular docking programs to select a 

ligand with a high affinity for the target protein [2]. Using 

the example of the search for ligands for the nonselective 

calcium channel TRPM8 we propose a two-step strategy 

based on the initial search with a help of deep neural 

networks with further verification by molecular docking. 

TRPM8 is a member of transient receptor potential 

channels (TRP) important in sensory physiology. The 

results of a number of studies suggest that this receptor is 

associated with cellular response to low temperatures [3]. 

A high level of TRPM8 expression in patients with asthma 

and COPD indicates its close relationship with the 

development of diseases of the respiratory system [4-6]. 

There are also certain indications of the possible role of the 

protein in the pathogenesis of prostate tumors [7, 8]. So, 

TRPM8 may be a potential target for drugs, created with a 

help of computer design [3]. In this study, we tried to 

develop a new two-step strategy for the search for potential 

ligands for TRPM8. In the first step, we created a hybrid 

architecture neural network capable to accept receptor-

ligand and classify them into interacting/non-interacting, 

thereby reducing the list of candidates for verification by a 

molecular docking program. After that, we tested the 

 

Corresponding author: Eugene Alexandrovich Borodin 
   Address : Amur State Medical Academy of the Ministry of Health of 

Russia, Blagoveshchensk, 675006, Russian Federation. 
E-mail:  borodin54@mail.ru 
Received: 16 February 2021; Revised: 14 April 2021; Accepted: 17 April 2021 

 This is an open access journal, and articles are distributed under the 
terms of the Creative Commons Attribution-Non Commercial-
ShareAlike 4.0 License, which allows others to remix, tweak, and build 
upon the work non-commercially, as long as appropriate credit is given 
and the new creations are licensed under the identical terms. 

https://doi.org/10.51847/893bRCEF1g


International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | April 2021 | Volume 11 | Issue 2 | Page 69-73 
Eugene Alexandrovich Borodin, A Two-Step Strategy for the Search for Ligands for Target Proteins 

ISSN (Online) 2249-6084 (Print) 2250-1029                                                                                       www.eijppr.com 
 

70 

ability of the predicted ligands to form complexes with 

TRPM8 with a help of the AutoDock program.  

MATERIALS AND METHODS  

In a preselected two-step strategy, the first step is 

implementing a neural network to decrease the number of 

potential ligands for a target molecule. We developed a 

hybrid architecture for our neural network such that we 

could pass encoded receptor-ligand pairs simultaneously 

through layers (Figure 1). To represent every receptor 

structure interpolated distance matrix 256×256 was used, 

for every ligand smaller distance matrix 30×30 was used 

(Figure 2).  

 

 

Figure 1. Hybrid neural network diagram 

 

 
Figure 2. Interpolated distance matrix for TRPM8 

 

Protein tertiary structure can be represented via a unique 

2D distance matrix reducing the computational complexity 

of further calculations. Distance between two atoms here is 

the distance between 2 points in the coordinate plane: 

 

𝑑 =  √(𝑥2 − 𝑥1)2(𝑦2 − 𝑦1)2(𝑧2 − 𝑧1)2 (1) 

The whole dataset contains separated .pdb files with atom 

coordinates for each molecule. All coordinate files with 

annotations were downloaded from the BioLiP database 

[9]. After that, according to the annotation file, receptor-

ligand pairs were formed and represented as distance 

matrices and transformed into 2D tensors, since the deep 

learning framework PyTorch [10] used in this work 

requires tensors for computations. The neural network 

takes pair of tensors as input, receptor goes through 

following layers: Conv2d(1-32)->max_pool(10, 10)-

>Conv2d(32-64)->fc(4608-1024)->fc(1024-512)->fc(512-
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64), at the same time, tensor matrix goes through fc(900-

512)->fc(512-128)->fc(128-64)->fc(64-64), at this step 

both tensors concatenates into a single one and pass 

through next layers: fc(128-64)->fc(64-64)->fc(64-2). 

Here, PyTorch notation is used, Conv2d means 2d 

convolution with the number of input-output features in 

parenthesis, fc means fully connected layers with the 

number of input-output neurons in parenthesis, max_pool 

means max pooling operation with kernel size in the 

parenthesis. Two output neurons represent the following 

"pair can interact" and "pair cannot interact". For each 

neuron, except the output two ReLU activation function 

was utilized, for output neurons SoftMax activation 

function was used. Mean square error was used as loss 

function and Adadelta with learning rate 0.5, rho 0.9, 

epsilon 10-6. Weights decay 0 was used as an optimization 

algorithm. Due to limitations in computational power, the 

network was trained for 500 epochs, on the training set with 

884 pairs with batch size 128. After, we prepared the 

following dataset: TRPM8 and 98 ligands to check which 

of these can be classified via network as interacting pairs. 

Pairs that the network considered as interacting pairs were 

tested via AutoDock software [11]. 

Docking of TRPM8 with candidates for the role of ligands 

for this protein predicted by the neural network was 

performed using the MGLtools graphic molecular 

laboratory toolkit [12] and special software for molecular 

docking AutoDock. The TRPM8 3D structure in pdb file 

format (structure 6O6A) [13] was taken from the Research 

Collaboratory for Structural Bioinformatics (RCSB) 

resource [14]. The PubChem resource [15] was used to find 

the 2D structures of the ligands proposed by the neural 

network. Tyrosine 745 (Y745) hydroxy group was used as 

the binding point of the canonical TRPM8 agonist menthol 

[16]. X:182.677; y:134.094; z:224.764 were chosen as the 

coordinates of the docking point. Docking was also carried 

out with Phe 1008 (R1008) and Alan 1009 (L1009) since 

these amino acid residues can also act as centers for the 

binding of some regulators [17]. The coordinates were 

x:199.941; y:131.155; z:201.831 (for R1008) and 

x:201.618; y:134.349; z:199.033 (for L1009). According to 

the protocol, docking was carried out only with subunit B 

of TRPM8. Three other subunits - A, C, and D were 

removed. To increase the reactivity, the molecule was 

dehydrated and hydrogenated. Next, the studied ligand was 

added and meshes were applied to the desired area, namely, 

the areas where Y745, R1008, and L1009 were located. 

After overlaying the mesh, we indicated the selection of 5 

positions and started docking. The result of docking was 

the obtained protein-ligand complex in the form of a dlg 

file with the number of stable conformations from the 

initial ones and the minimum binding energy. The obtained 

results were compared with the results of docking of the 

canonical TRPM8 agonist menthol. 

RESULTS AND DISCUSSION  

When using the neural network we created for classifying 

ligand/receptor pairs, the accuracy reached 70%. This is 

not a very high value, but it shows the potential of our 

method, and when using large computing power, the 

prediction accuracy can be increased. The description of 

3D structures proposed in this work in a 2D form by the 

distances between each element seems to be a convenient 

and promising way for describing complex structures. The 

neural network suggested 10 ligands for TRPM8. Namely, 

gibberellin (A17), flavinadenine dinucleotide (FAD), 

dichlorophenylarsine (FDA), G4M, progesterone (57-83-

0), aldosterone (52-39-1), goserelin (65807-02-5), 

xylometazoline (526-36-3), cortisol (53-06-5), and 

dexamethasone (III). Numerous molecules in the BioLiP 

base are presented in various forms and often only as a 

single domain. This seems to explain the fact that we were 

able to match only a small number of pairs. Below we give 

the names of the ligands without specifying a specific 

domain. The adequacy of the predictions of ligand for 

TRPM8 by the neural network was estimated with a help 

of molecular docking using the AutoDock software. As a 

result, eight out of ten stable complexes were identified at 

each center. The number of stable conformations and the 

established values of the minimum docking energy are 

shown in Tables 1-3. 

 

Table 1. Minimum binding energies for the identified 

conformations of ligands when docked with the center 

Y745. 

Ligands 

Minimum binding energy (kcal/mol) 

Revealed conformations of the ligand 

1 2 3 4 5 

A17 -4.4 -4.1 - - - 

FAD -4.7 -4.7 -4.7 -4.7 -1.9 

G4M -9.5 -8.4 -8.4 -5.4 -4.8 

57-83-0 -5.5 - - - - 

52-39-1 -8.7 -6.9 - - - 

526-36-3 -5 - - - - 

53-06-5 -8 - - - - 

III -5.7 -5.6 - - - 

 

Table 2. Minimum binding energies for the identified 

conformations of ligands when docked with the center 

R1008. 

Ligands 

Minimum binding energy (kcal/mol) 

Revealed conformations of the ligand 

1 2 3 4 5 

A17 -5.8 -5.6 -5.6 - - 
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FAD -11.9 -10 -9 -8.3 -5 

G4M -10 -9.6 -7.6 -6.5 -3.4 

57-83-0 -6.3 - - - - 

52-39-1 -8.8 -8.6 - - - 

526-36-3 1.-5.18 -4.9 - - - 

53-06-5 1.-8.40 -8.2 - - - 

III 1.-9.62 -9.3 - - - 

 

Table 3. Minimum binding energies for the identified 

conformations of ligands when docked with the center 

L1009. 

Ligands 

Minimum binding energy (kcal/mol) 

Revealed conformations of the ligand 

1 2 3 4 5 

TablesA17 -5.5 -5.4 -5.0 4.- 5.- 

FAD -12 -10.4 -6.7 -3.4 - 

G4M -10.3 -9.3 -9.1 -9.1 -7.1 

57-83-0 -5.6 - 3.- 4.- 5.- 

52-39-1 -9.2 -8 3.- 4.- 5.- 

526-36-3 -5.6 -5.4 -5.4 - - 

53-06-5 -10.1 -8.7 -8.2 - - 

III -11.3 -10.1 - - - 

 

The minimum binding energy reflects the affinity of the 

receptor for the ligand. The lower it is, the more durable 

the protein-ligand complex. Most neural network-

predicted ligands have lower binding energy (Tables 1-3) 

than the canonic agonist of TRPM8 – menthol, docked in 

the same coordinate as the predicted ligands (Table 4).  

Table 4. The minimum binding energy of the identified 

conformations of menthol (ligand 1490-04-6) with centers 

Y745, R1008, L1009. 

Binding centers 

Minimum binding energy (kcal/mol) 

Conformations 

1 2 

Y745 -4.69 -4.45 

R1008 -4.94 - 

L1009 -5.41 - 

 

Of the candidates suggested by the neural network, FAD 

and G4M revealed the largest number of conformations (5 

out of 5) with centers R1008 and Y745. For the L1009 

center, FAD revealed successful docking for 4 of 5 

specified conformations. It should be concluded that it is 

these ligands that have the highest affinity for TRPM8. 

Two of the predicted ligands, namely FDA and goserelin, 

failed to dock. AutoDock software is unable to recognize 

the arsenic atom in the FDA, and because of this FDA 

failed to dock with the centers Y745, R1008, and L1009.  

he reason for the error for docking may be the damaged 

source files of the ligand. pdbqt, or the insufficient 

allocated memory of the computer. The unsuccessful 

docking of goserelin with the centers may be explained by 

the large size of the ligand. It may be the reason for the 

error at each docking attempt. The explanation of the 

program for the unsuccessful docking consist of numerous 

mobile bonds and C atoms. The proposed two-step strategy 

for the search for ligands for TRPM8 is universal. It allows 

quickly test the affinity of a large number of possible 

ligands for a particular protein molecule. After 

improvement, our approach may significantly facilitate the 

search for ligands for any protein. It should be noted that 

the established ligand candidates are capable of forming a 

stable complex with the receptor. However, whether they 

are agonists or antagonists for TRPM8 is unknown. To 

answer this question, experiments on cell cultures or on 

model animals are required. Four from the ligands 

predicted by the neural network that form complexes with 

TRPM8 are steroid hormones. Drugs based on 

corticosteroids have long been used as anti-inflammatory 

and immunosuppressive drugs. As mentioned above 

TRPM8 is involved in the formation of bronchial 

hypersensitivity to cold in patients with bronchial asthma 

[4]. The high affinity of corticosteroids to TRPM8 

established in this work can explain their pharmacological 

effects.  

The proposed strategy based on a combination of the use of 

neural networks and molecular docking needs more 

computing power than was available to us. Therefore, the 

dataset we used for our project was insufficient. The method 

will be refined in the future and will allow a more accurate 

search for candidates for the role of a drug with a high 

affinity for receptor molecules. 

CONCLUSION 

In the present study, we proposed a strategy for predicting 

potential ligands for TRPM8 in silico, based on the use of 

machine learning tools based on deep neural networks and 

further verification by intermolecular docking. The use of a 

neural network makes it possible to prescreen potential drug 

candidates and thereby reduce the list of candidate ligands 

for verification using intermolecular docking (AutoDock), 

which evaluates the affinity of the protein for the ligand by 

the minimum binding energy and reveals possible ligand 

conformations upon binding to certain amino acid residues 

of the protein. The latter were used: Tyr 745, Phe 1008, and 

Ala 1009. Of the ten ligands, which were suggested by the 
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neural network, eight revealed high minimum binding energy 

and more conformations in relation to the classic TRPM8 

ligand menthol, when verified by the AutoDock program. 

The two suggested ligands did not show the interaction with 

TRPM8, which may be due to some technical problems. The 

proposed strategy is universal and will speed up the search 

for ligands for various proteins.  
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