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ABSTRACT 
Tocolysis is an important procedure in obstetrics used to delay preterm delivery. Tocolytics are medications 
used in achieving postponing preterm delivery mainly by reducing uterine contractility, hence, reducing 
perinatal morbidity and mortality. Different biologic proteins are involved. This essay discusses the effects of 
various biologic receptors and proteins on uterine relaxation, and their possible tocolytic mechanisms. These 
include the beta (β) adrenergic receptors, anoctamin-1, calcium channel antagonists, calmodulin, cyclo-
oxygenase (COX) 1 and 2, amongst others. The articles used for this review covered the period up to 2022, and 
over 180 articles were obtained following literature search and of these, 64 were adapted for this article. Others 
whose scope were not relevant to the review were excluded. The articles were retrieved following searches 
using search engines and databases including Medline, Elsevier, Medscape, eMedicine, Google and PubMed. 
Understanding the mechanisms of tocolytic effects will benefit exploring more therapeutic ways of inducing 
uterine relaxation in improving pregnancy outcomes, thus resulting in decline of fetal morbidity and mortality. 
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INTRODUCTION 

Tocolytic agents are substances or medications whose 

main goal is to stop or lessen myometrial smooth muscle 

cell spasms. Several pharmacological compounds, 

including oxytocin antagonists, β-adrenergic agonists, 

nonsteroidal anti-inflammatory medications, calcium 

channel antagonists, and magnesium sulfate, have had this 

inhibitory action examined in vitro, in vivo, or both [1-3]. 

However, the main objectives of tocolysis are to inhibit 

uterine contractions, prevent preterm delivery, prevent 

mortality associated with preterm birth and perinatal 

morbidity [4, 5].  

Abnormal contractility in human may underlie such 

disorders as dysmenorrhea, endometriosis, improper 

embryo implantation, spontaneous miscarriage or preterm 

labor [6]. For contraction to take place, there are usually 

changes that are accompanied by decreasing of 

progesterone and increasing of estrogen, up regulation of 

myometrial oxytocin receptor, reduced nitric oxide activity 

increased the influx of calcium into myocyte and increased 

prostaglandins synthesis [7]. 

There are some benefits to extending pregnancy, which 

theoretically enables time for corticosteroids to be given to 

the mother to hasten fetal lung development and 

magnesium sulphate (MgSO4) to be given to lessen the risk 

of cerebral palsy [1, 3]. Because of these factors, brief 

tocolytic treatment is frequently used to prevent premature 

labor and delay preterm birth [8]. The ideal tocolytic agent 

is one that is safe for pregnant or non-pregnant women yet 

has no side effects on either she or her unborn child [9]. 
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This review discusses the effects of various biologic 

receptors and proteins on uterine relaxation, and their 

possible tocolytic mechanisms. The articles used for this 

review covered the period up to 2022, and over 180 articles 

were obtained following literature search and of these, 64 

were adapted for this article. Others whose scope were not 

relevant to the review were excluded. The articles were 

retrieved following searches using search engines and 

databases including Medline, Elsevier, Medscape, 

eMedicine, Google and PubMed. 

Biologic proteins with tocolytic effects 

Beta (β) adrenergic receptors (β-ARs) 

The sympathetic nervous system is crucially dependent on 

beta-adrenergic receptors (β-ARs). They belong to the G 

protein-coupled receptor superfamily (GPCRs), and 

adrenaline and noradrenaline, two naturally occurring 

catecholamines, regulate their signaling pathway [10]. The 

smooth muscle of the uterus, bronchioles, and blood 

arteries is home to the β2-AR. They prevent uterine 

contraction, vasodilation, and bronchodilation when 

stimulated [11]. Numerous human and animal tissues, 

including white and brown adipose tissues, skeletal 

muscles, the heart, gastrointestinal smooth muscles, the 

respiratory tract, and the urogenital system, have been 

found to contain β3-adrenergic receptors (β3-AR) [12]. The 

uterine β3-AR perform the same function as β2-AR; they 

are essential for the myometrium to relax, as demonstrated 

by studies on this subject [12, 13]. Functional β3-AR has 

been detected in the myometrium of pregnant, near-term, 

and non-pregnant humans. They predominate over the β2-

AR subtype and are overexpressed in the uterus of pregnant 

women. Furthermore, β3-AR are resistant to the long-term 

agonist-induced desensitisation of the myometrium at the 

conclusion of pregnancy in humans [14, 15].  

The activation of Gs proteins by agonists of the β-

adrenergic receptor is known to result in the relaxation of 

smooth muscle cells, and the Gs component of these 

proteins stimulates adenyl cyclase. In doing so, more cyclic 

adenosine monophosphate (cAMP) is produced. When 

protein kinase A is activated, the Ca2+ channels are then 

phosphorylated. This is a mechanism that happens in 

cardiomyocytes, and it might also happen in the 

myometrium of a pregnant woman. Adenylate cyclase is 

related to β-adrenergic receptors. β-adrenergic medications 

increase the intracellular concentration of cyclic AMP, 

which directly phosphorylates myosin light-chain kinase to 

inhibit its function. They also have the effect of lowering 

the calcium concentration inside cells. This led to mean 

actin removal and smooth muscle relaxation. Myosin-

myosin interaction [16]. 

 

Anoctamin-1 (ANO1) 

The ANO1 gene in humans [17] produces the protein 

known as anoctamin-1 (ANO1), also known as 

transmembrane member [16] A (TMEM16A). Anoctamin-

1 functions as both a chloride channel and a bicarbonate 

channel, and it is a voltage-gated calcium-activated anion 

channel [18]. The apical iodide channel Anoctamin-1 is 

another feature. Throughout the gastrointestinal tract, this 

protein is found in smooth muscle, epithelial cells, 

olfactory sustentacular cells, vomeronasal neurons, and is 

highly abundant in interstitial cells of Cajal (ICC). All 

ANO family members (apart from ANO7) are expressed in 

the uterine smooth muscle (USM) tissue of pregnant 

women via messenger RNA (mRNA) [19]. When 

compared to non-pregnant USM, the expression of 

Anoctamin 1 mRNA was 15.2-fold lower in pregnant 

USM. Pregnant human USM tissue expresses anoctamin 1 

protein. In a study on the pregnant human USM tissue 

using an organ bath, ANO1 antagonist benzbromarone was 

seen to attenuates the force and frequency of contractions 

that where oxytocin-induced [19, 20].  

It is important to emphasise that because these channels are 

voltage-gated, their depolarizing threshold must be 

reached in order for them to become active. Uterine smooth 

muscle in mammals experiences a gestation-dependent 

hyperpolarization during the middle of pregnancy (and 

until the start of labor), which is known to be controlled by 

altered expression of potassium channels (USM). It is 

unknown what underlying ionic conductance causes the 

resting membrane potential in the USM to depolarize 

closer to the action potential (AP) threshold when a 

mammal reaches gestation and labour begins. One type of 

channel, the calcium-activated chloride channels (CaCCs), 

is thought to be crucial for the depolarizing drive (but not 

well characterised in the human uterus) [21]. In a study, it 

was demonstrated that blocking a subset of channels from 

the ANO family (also known as TMEM16), notably ANO1 

and ANO2, reduced pro-contractile depolarizing 

membrane currents [20], resulting in a relaxation of murine 

USM contraction. Inhibition of contraction in the human 

USM during pregnancy results from ANO1 antagonistic 

effects such as pharmacological inhibition and genetic 

knockdown. A putative novel target for tocolysis is 

anoctamin 1 [19, 20]. 

 

Calcium channel antagonists 

All currently available calcium antagonists share the 

common property of blocking the transmembrane flow of 

calcium ions through voltage-gated L-channels on non-

vascular smooth muscles, vascular smooth muscles and 

non-contractile tissues. These nonvascular smooth muscles 

include uterine, bronchial, genitourinary, and 

gastrointestinal; vascular smooth muscles include arterial 

and venous; and non-contractile tissues include pituitary, 

pancreas, salivary glands, adrenal glands, gastric mucosa, 
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white cells, platelets, and lacrimal tissue [22]. Smooth 

muscle relaxes as a result of L-type channel blockade, and 

cardiac tissue experiences a detrimental inotropic effect 

[22]. Nifedipine and nicardipine are two of the most 

commonly used tocolytics [23, 24]. Calcium channel 

blockers (CCBs) are another class of drug. CCBs are 

steadily gaining ground and becoming more significant 

when compared to conventional tocolytics such beta-

adrenergic receptor (-AR) blockers or magnesium sulfate 

[24].  

The five different subunits of the Ca2+ channels (subunits 

1, 2, 3, and 4) are complex proteins that are encoded by 

several genes [25]. The rise in Ca2+ concentration in the 

intracellular space of myometrial cells controls the 

contraction of the uterus. Voltage-gated Ca2+ channels 

(VGCCs) moderate Ca2+ inflow in response to membrane 

depolarization, which controls intracellular functions 

including contraction. The myosin light chain kinase 

(MLCK) is activated in the myometrium cells as a result of 

the Ca2+ binding to calmodulin. As a result, serine 19 on 

myosin light chains is phosphorylated, starting the process 

that triggers cross-bridge cycling [25].  There are two 

origins of the rise in activator Ca2+: release from the 

sarcoplasmic reticulum and/or entrance across the surface 

membrane via VGCCs. The primary source of Ca2+ for 

contraction in the uterus is due to the action potential's 

subsequent depolarization and opening of the VGCCs. 

When VGCCs are blocked, the influx of Ca2+ and 

contractions are halted [25]. Each contraction happens 

when a Ca2+ transient occurs in the uterus. Voltage-

dependent L-type calcium channels have been discovered 

in uterine myometrium and are in charge of the bulk of the 

calcium current seen in human myometrium, according to 

electrophysiological, pharmacological, and molecular 

studies [25, 26].   

Nifedipine is one example of a dihydropyridine (DHP) that 

binds to the binding side of the voltage-gated L-type 

channels of DHP, which is found on the α1 subunit. The α1 

subunit's alternative splicing locations have produced a 

number of isoforms for the channels. One of the VGCC 

isoforms (S3B) has enhanced expression during labour in 

pregnant rats, according to research [25]. During 

pregnancy and labour in guinea pigs, significant alterations 

in the expression of the L-type VGCCs' α1 subunit were 

seen [25, 27]. The role of L-type VGCCs in the parturition 

process is aided by an increase in DHP binding capacity 

that was observed in the second half of gestation [25].   

 

Calmodulin 

The tiny heat- and acid-stable protein calmodulin was first 

identified in 1970. It was later found to be a binding protein 

that activates phosphodiesterase [28, 29]. Since then, it has 

been shown that the protein exists in the majority of organs, 

and its significance in the control of metabolism has been 

investigated. Calmodulin was found in the uterus of a 

bovine, and it is thought to have a significant role in 

smooth muscle contraction [30, 31]. It has also been 

demonstrated that calmodulin controls cell activity in other 

tissues: In cardiac cells, the Ca2+ dependent ATPase is 

involved in the intracellular transport of Ca2+. Calmodulin 

influences this enzyme and enhances prostaglandin 

synthesis in human platelets, likely via activating 

phospholipase A2 [32].  

In a study, calmodulin content in the uteri experienced a 

three-fold increase in both pregnant humans and rodents 

that had gotten to time of delivery compared to non-

pregnant uteri [30, 33].  Another study found that there was 

no difference in the camodulin content between uteri with 

and without labour pain, indicating that even if camodulin 

levels rise at term, they do not directly trigger the start of 

delivery. The increase in camodulin content caused by 

estrogen has been demonstrated to augment the uterine 

contractile response [30, 34].  

 

Cyclo-oxygenase (COX) 1 and 2 

Cyclooxygenases (COXs) is a rate limiting enzyme whose 

major function is to regulate the process involved in the 

sythensis of prostaglandins (PGs), they are also key 

regulators of some of reproductive processes, such as 

ovulation, implantation, decidualization and parturition 

[35]. COX-1 and COX-2 are the two isoforms of this 

enzyme. By accelerating the transformation of arachidonic 

acid into prostaglandin G2, which is then further 

peroxidized to prostaglandins (PG2) [35, 36].  they regulate 

prostaglandins (PGs) sythensis. The majority of tissues 

express COX-1 as a constitutive enzyme, whereas COX-2 

expression is activated by cytokines/growth factors, or 

inflammatory stimuli. According to studies, COX-1 is 

essential for parturition, whereas COX-2 is necessary for 

ovulation, fertilization, implantation, and decidualization 

[35, 37, 38].   

Hormones called prostaglandins are recognised to have a 

wide range of uses. Prostaglandins influence uterine 

muscle contraction by elevating free intracellular calcium 

levels and activating myosin light chain kinase [39].  

Prostaglandins are essential for beginning and sustaining 

labor [40]. The synthesis of prostaglandins depends on 

COX enzymes. Prostaglandin production will decrease, 

and uterine contractions will also diminish as a result of 

COX activity inhibition [35]. Indomethacin, the most 

commonly used prostaglandin inhibitor for tocolysis, 

works by reversibly binding to COX [9, 41]. The creation 

of COX-2-specific inhibitors was made possible by the 

recognition of COX's two different forms, COX-1 and 

COX-2. It is clear that COX-2 plays a role in triggering 

labour because COX-2 expression rises dramatically 

before labour begins but COX-1 expression is unchanged 

[41].   
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Prostaglandin inhibitors outperformed placebo in a 

network meta-analysis of tocolytic drugs in terms of their 

ability to delay parturition by 48 hours. They also had a 

96% likelihood of being listed among the top three 

tocolytics in terms of effectiveness [9]. The ability of COX 

inhibitors to cross the placenta readily raises worries about 

the possible negative consequences of extended exposure 

on the developing fetus's gut, circulatory system, and 

kidney [41]. COX inhibitors have been shown to interfere 

with prostaglandin homeostasis. Numerous reports of 

oligohydramnios, renal failure, premature ductus 

arteriosus closure with subsequent pulmonary 

hypertension, persistent patent ductus arteriosus, 

necrotizing enterocolitis, and intraventricular haemorrhage 

in the fetus and neonate have been linked to in utero 

exposure to indomethacin during tocolysis [41, 42].   

 

Prostaglandin receptors 

Prostaglandins play an important role in female 

reproduction, they are inflammatory mediators. 

Prostaglandin (PG) receptors are expressed in the 

cytoplasmic membranes, they are heptahelical 

transmembrane G protein coupled receptors [43, 44].  

Prostaglandins consist of PGF2a PGD2, PGE2, 

thromboxane A2 and prostacyclin [36]. While PGE2 acts 

through four distinct receptor subtypes, EP1, EP2, EP3, 

and EP4, PGF2a is mediated by FP receptors. The 

molecular characteristics, tissue location, and unique 

differential affinities to ligands of these receptors are all 

noteworthy. Female reproduction depends on the 

hormones PGE2 and PGF2a, which have a variety of 

activities including uterine contraction, blastocyst spacing, 

implantation, and decidualization [44, 45].  EP1, EP3, and 

FP produce smooth muscle contraction, while EP2 and 

EP4 assist in smooth muscle relaxation [44, 46]. 

Endometrial blood flow, stromal edema control, and blood 

vessel permeability are expected to be affected by EP2, 

EP3, and EP4 [44].   

In order to reproduce and keep a pregnancy going, 

prostaglandins, which are lipid mediators, are essential. 

The terminal prostanoid synthase, PGE synthase (PGES), 

is capable of enzymatically converting PGH2—the end 

product of cyclooxygenase—to PGE2. The functionally 

different cell surface receptors EP1, EP2, EP3, and EP4 are 

engaged by PGE2 and bind to and become active. PGF2a is 

regarded as the most likely candidate among the 

prostaglandins to be present throughout pregnancy. By 

enhancing oxytocin-induced contractions, it is essential for 

the myometrium to function properly during parturition. 

PGF synthase produces PGF2a, which has an effect through 

the FP receptor [35].   

 

ATP-sensitive K+ channels (KATP channels) and 

Receptors 

Potassium channels plays a vital roles in normal 

reproductive function, this function depends primarily on 

it, and the ATP-sensitive K+ (KATP) channels plays a 

leading role in it, as seen lately in a number of studies [47-

50].  When potassium channels are activated they increase 

the plasma membrane potential, this blocks the voltage-

dependent Ca2+ channels and prevents Ca2+ entry, thus 

stopping contraction and cause relaxation of myometrium 

muscle fibers [51]. Even if they are expressed 

constitutively in the myometrium, they are down regulated 

in late pregnancy, to ensure higher excitability of the uterus 

during labor [48, 52].  These facts shows the substantial 

role the KATP channels plays in the regulation of excitation 

and contraction coupling in myometrium. Estrogen and 

progesterone regulates KATP channels. KATP channels in the 

uterus and other smooth muscles are activated by estrogen, 

however, an opposite effect is seen in pancreatic cells and 

cardiomyocytes [53-56] and the most reason for this is that 

estrogen in physiological concentrations moderately 

increases production of nitric oxide (NO) [57]. 

 

Bitter taste receptors (TAS2Rs) 

The bitter taste receptors (TAS2Rs) and its canonical 

signaling elements (i.e., G-protein gustducin and 

phospholipase C β2) are highly expressed in the 

myometrial cells of both humans and mice [58]. According 

to studies, bitter tastes have the power to relax 

myometrium that has been pre-contracted by various 

uterotonics. More frequently than other frequently used 

tocolytics, chloroquine (a phenotypical bitter tastant) was 

able to stop contractions in preterm deliveries in mice that 

were caused by the progesterone receptor antagonist 

mifepristone or the bacterial endotoxin LPS [58]. 

Relaxation of myometrium, initially contracted by various 

contractile agonists, was activated by the canonical TAS2R 

signaling system, hence, one possible area to explore in 

developing effective tocolytics for preterm birth 

management will be targeting the TAS2Rs [58]. 

 

Heat shock proteins (HSPs)  

In the early 1960s, Ferruccio Ritossa first described the 

heat shock proteins (HSP) while working with Drosophila 

melanogaster [59]. A wide family of molecular chaperones 

known as the heat shock proteins (HSPs) are categorised 

based on their molecular weights (HSP27, HSP40, HSP60, 

HSP70, and HSP90). They carry out several physiological 

and defensive functions that aid in the preservation of 

cellular homeostasis [60, 61]. They are swiftly upregulated 

in response to exposure to stressful conditions [61].  

There is an abundance of HSP27, HSP60, HSP70 and 

HSP90 in endometrial and uterine cells, an indication of 

their likely involvement during the pregnancy process [59, 

62]. They are linked with decidualization, implantation and 

placentation, with their dysregulation associated with 
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pathological pregnancies [59]. When circulating Hsp70 

concentrations increases there is a corresponding increase 

in the risk of several pregnancy complications 

[62]. Elevated circulating heat shock proteins are 

associated with spontaneous preterm birth, thus, their 

suppression maybe positive in positive pregnancy 

outcomes [63, 64]. 

CONCLUSION 

Tocolysis involves the use of medications to cause uterine 

relaxation with the purpose of delaying fetal delivery 

following preterm contractions. Understanding the 

mechanisms of tocolytic effects will benefit exploring 

more therapeutic ways of inducing uterine relaxation in 

improving pregnancy outcomes, thus resulting in decline 

of fetal morbidity and mortality.  
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