International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | February 2023 | Volume 13 | Issue 1 | Page 13-18 Chinenye Nwankwo, *In Vitro* Assessment of Conventional and Plant-derived Antifungal Agents against *Candida* Species Prevalence among Pregnant Women in Southeastern Nigeria

In Vitro Assessment of Conventional and Plantderived Antifungal Agents against Candida Species Prevalence

Chinenye Nwankwo^{1,2}, Ijeoma Okolo³, Anthonia Mba⁴, Henrietta Uzoeto^{5,6}, Evangeline Udenweze⁷, Francisca Okoli¹, Mandu Thompson³, Ezinwanne Chukwu⁶, Nnyeneime Bassey³, Justina Ngwu⁶, Ikemesit Peter⁸*

¹Department of Applied Microbiology and Brewing, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Anambra, P. M. B. 5025, Nigeria.

²Department of Antiretroviral Treatment, Federal Medical Centre, Onitsha, Anambra, P. M. B. 430213, Nigeria. ³Department of Applied Science, Faculty of Pure and Applied Science, Federal College of Dental Technology and Therapy, Trans Ekulu, P.M.B. 01473, Enugu, Nigeria.

⁴Department of Industrial Microbiology and Brewing, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Anambra, P. M. B. 5025, Nigeria.

⁵Department of Microbiology, Faculty of Pure and Applied Science, Federal College of Dental Technology and Therapy, Trans Ekulu, P.M.B. 01473, Enugu, Nigeria.

⁶Department of Dental Therapy, Faculty of Dental Health, Federal College of Dental Technology and Therapy, Trans-Ekulu, P.M.B. 01473, Enugu, Nigeria.

⁷Department of Industrial Microbiology and Brewery, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Anambra, P. M. B. 5025, Nigeria

⁸Department of Public Health, Faculty of Health Technology and Engineering, Federal College of Dental Technology and Therapy, Trans-Ekulu, P.M.B. 01473, Enugu, Nigeria.

ABSTRACT

We investigated the in vitro assessment of conventional and plant-derived antifungal agents against Candida species prevalence among pregnant women in Southeastern Nigeria. A total of 300 non-duplicate clinical samples from pregnant women were processed using the standard microbiological protocol for isolation and characterization of *Candida* species on CHROM agar *Candida*. The antifungal susceptibility testing (AST) profile was performed using the Vitek 2 system. The plant-derived antifungal susceptibility testing with Cocos nucifera oil was performed using the agar-well diffusion method. The result of isolation shows that the most prevalent Candida species was C. albicans (41.0%), followed by C. glabrata (23.0%), C. krusei (14.0%), C. tropicalis (12.0%), and C. dubliniensis (8.0%). The antifungal susceptibility profile revealed that the Candida species were highly susceptible to voriconazole within the range of 82.6-100% but were extremely resistant to Nystatin 100%, micafungin 100%, and fluconazole 75.0-100%. The plant-derived antifungal susceptibility patterns of Cocos nuficera oil revealed that all the Candida species were 100% susceptible to Cocos nucifera oil at 100 mg/ml, 50 mg/ml, and 25 mg/ml (1:0, 1:2, and 1:4 dilutions) concentrations. Our findings have indicated that Cocos nuficera oil can serve as an alternative to contemporary antifungal agents if properly harnessed for in vivo utilization. Also, an agent such as voriconazole appeared as a better option for the management of Candida infection, in vitro susceptibility assay of another conventional antifungal agent for empirical antifungal treatment should rely on the outcomes of this study and antifungal susceptibility testing.

Key Words: Candida species, Conventional, Plant-derived, Antifungal agents, Cocos nucifera oil

eIJPPR 2023; 13(1):13-18

HOW TO CITE THIS ARTICLE: Nwankwo Ch, Okolo I, Mba A, Uzoeto H, Udenweze E, Okoli F, et al. *In Vitro* Assessment of Conventional and Plant-derived Antifungal Agents against *Candida* Species Prevalence among Pregnant Women in Southeastern Nigeria. Int J Pharm Phytopharmacol Res. 2023;13(1):13-8. https://doi.org/10.51847/64mXiTGGOe

Corresponding author: Ikemesit Peter

Address: Department of Public Health, Faculty of Health Technology and Engineering, Federal College of Dental Technology and Therapy, Trans-Ekulu, P.M.B. 01473, Enugu, Nigeria. E-mail: ⊠ ikemesitpeter@gmail.com

Received: 08 December 2022; Revised: 08 February 2023; Accepted: 10 February 2023

This is an **open access** journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | February 2023 | Volume 13 | Issue 1 | Page 13-18 Chinenye Nwankwo, *In Vitro* Assessment of Conventional and Plant-derived Antifungal Agents against *Candida* Species Prevalence among Pregnant Women in Southeastern Nigeria

INTRODUCTION

Candida species are currently the most prevalent etiologic agent of fungal infections. Depending on the immunocompetence of the host, the infection may range from trivial or mild infection or systemic to mucocutaneous infection such as vulvovaginal, oropharyngeal, and genitourinary candidiasis [1]. Mucocutaneous infections are one of the clear indications cell-mediated immunodeficiency, which may of predictively enhance the occurrence of more than 90% of invasive candidiasis [1]. Approximately 20-50% of the vaginal microflora constitute Candida species [2] while 90% of infections [3] are caused by a few Candida species namely; C. albicans, C. glabrata, C. auris, C. tropicalis, C. krusei, and C. parapsilosis [4, 5]. The pathogenesis of fungal infection by Candida species is associated with virulence factors such as yeast-to-hyphal transformation, hydrolytic enzyme production, biofilm development, expression of adhesion, and invasion proteins [2]. However, hemolytic enzymes and hydrolytic enzymes namely lipases, phospholipases produced by the Candida species contribute to its virulence while the secreted aspartyl proteinases play a role in the attachment, penetration, and invasion of host tissues, inducing tissue damage, thereby aiding the establishment of infection [2, 6]. As this opportunistic pathogen inhabits the genital tract, it has been reported that there's a higher incidence of Candida infection in pregnant women than in nonpregnant women [2, 7, 8]. As pregnancy is often a risk factor that disturbs the urogenital microflora, it enables the occurrence of vaginal infection due to an imbalance of hormonal secretion [9]. Also, the use of antibiotics, diabetes mellitus, and host behavioral-associated factors such as poor personal hygiene, consumption of oral contraceptives, and sexual intercourse enhance the establishment of Candida infection [10]. Candida species represents the most frequent yeast infections affecting pregnant women. Due to persistent, recurrent, and complicated incidences of Candida infection, the efficacy of most antifungal agents has been eroded. Thus, despite the availability of three main effective conventional antifungal agents such as azoles, polyenes, and echinocandins, Candida species infection remains a complicated infection to manage because of the emerging drug resistance and the recurrent character of the disease [11]. However, evidence of the increasing prevalence of Candida species resistance is also reported in antifungal surveillance studies globally [12-14]. As the looming threat of clinical antifungal tolerance or resistance persists, susceptibility tests remain essential for the screening and selection of conventional antifungal agents [3, 6, 15], it is important to look into plant-derived antifungal agents such as Cocos nucifera oil to curtail the scourge of antifungal resistant. Cocos nucifera oil also known as Coconut oil is a type of tropical oil that has been used for centuries in traditional diets and remedies. This plant-derived agent has been reported as an immune booster and also possesses anti-microbial, antioxidant, and anti-inflammatory properties. Presently, Cocos nucifera oil has been reported to possess antifungal, antibacterial, and antiviral properties [16] owing to its unique phytochemical component. In recent times, numerous plant-derived compounds have been on the increase for their promising antimicrobial activities linked to the existence of natural products in plants with medicinal properties [17, 18]. The hunt for plant-derived antifungal agents as alternative therapeutic against antifungal-resistant isolates that cause illnesses is critical, especially given the rise in Candida species' reduced susceptibility to routinely used conventional antifungal agents. Thus, there is a need for assessment of empirical conventional and plant-derived antifungal agent sensitivity data in Enugu Southeastern Nigeria, which may differ for every geographic region but significantly plays a crucial role in appropriate and effective management strategies.

MATERIALS AND METHODS

Clinical sample collection, isolation, and conventional antifungal susceptibility testing of candida species

Before the study, the approval for the study was obtained from the medical research and ethical committee of the University of Nigeria Teaching Hospital (UNTH), Ituku Ozalla, Enugu, Nigeria located at 6°18'05.0" N latitude and 7°27'34.9" E longitude. The study was done according to principles guiding human research or data. A total of 300 non-duplicate mid-stream urine {100}, endo-cervical swab {100}, and high virginal swab samples {100} were collected within the period of 9 months (August 2022-April 2023) from pregnant women attending UNTH, Ituku Ozalla, Enugu, Southeastern, Nigeria. All samples were processed following the standard microbiological protocol for the isolation of Candida species on CHROM agar Candida (BioMerieux, France). A typical colonial appearance of creamy, leaf green, pale pink, deep green, and metallic blue pigmentation on CHROM agar Candida (BioMerieux, France) phenotypically infers the presence of C. glabrata, C. albicans, C. krusei, C. dubliniensis, and C. tropicalis, respectively. Candida species were further confirmed using the Vitek 2 system (BioMerieux, France). The Antifungal Susceptibility Testing (AST) profile was carried out using the Vitek 2 system (BioMerieux, France). The antifungal susceptibility testing panel comprises five conventional antifungal agents namely; voriconazole, amphotericin B, micafungin, fluconazole, and nystatin.

The results were recorded as recommended by the Clinical and Laboratory Standards Institute (CLSI) performance guideline as resistant (R) and susceptible (S) [14, 19].

Processing of plant-derived antifungal agent

The processing of plant-derived antifungal agents; Cocos nucifera oil was performed according to Orji et al. [16]. Briefly, a fresh *Cocos nucifera* meat peel from the fibrous husk was sliced, blended, and pressed using a sterile sieve to obtain the Cocos nucifera milk. The milk was kept at room temperature to undergo fermentation for 48 hours. Thereafter, the oil was separated from the solids and the water content. The moisture content was removed by heating the oil at 50 °C and was then filtered with a filter (Savin, Nigeria Limited) to obtain a pure extract of Cocos nucifera oil [16]. The extract of Cocos nucifera oil was preserved in a sterile vial at 4 °C until further use [16]. A sterility test was performed by pouring 1ml of the extracted oil on brain-heart Infusion agar (bioMérieux, France) plates and incubating overnight at 37 °C. The absence of microbial growth was phenotypically confirmed after overnight incubation.

Plant-derived antifungal susceptibility testing

The plant-derived antifungal susceptibility testing was performed using the agar-well diffusion method as outlined by Peter *et al.* [17]. In brief, overnight culture of the test *Candida* species suspension equivalent to 1×10^6 colony forming unit per milliliter (cfu/ml) were adjusted to 0.5 MacFarland turbidity standard and were spread over the entire surface of solidified Mueller-Hinton agar (Merck Co., Germany) plates using a sterile cotton-tipped swab stick. The *Cocos nucifera* oil extract concentration of 100 mg/ml (undiluted), 50 mg/ml, and 25 mg/ml was filled in three agar wells made on each of the Petri dishes using a 6cm cork borer and incubated at 37 °C for 24 hours. After

overnight incubation, the clear zones of inhibition were measured and recorded in millimeters (mm) [17].

RESULTS AND DISCUSSION

The data revealed the presence of five Candida species namely C. albicans, C. tropicalis, C. dubliniensis, C. krusei, and C. glabrata. Candida species accounted overall prevalence of 98 (32.7%) among pregnant women. The most prevalent Candida species was C. albicans (41.0%), followed by C. glabrata (23.0%), Candida krusei (14.0%), Candida tropicalis (12.0%), and C. dubliniensis (8.0%) as shown in Table 1. Candida species were more predominant in HVS (43.0%) over ECS (33.0%) and Midstream Urine (22.0%) (Table 1). We investigate the antifungal susceptibility profile of Candida species (Table 2). All Candida species were susceptible to voriconazole within the range of 82.6-100%, C. dubliniensis and C. glabrata were 75.0% and 100% susceptible to amphotericin B while low susceptibility to amphotericin B 7.1% was recorded against C. kruesi. Only C. krusei and C. glabrata were susceptible to micafungin recording 62.5% and 100%, respectively, while C. albicans, C. tropicalis, and C. dubliniensis were extremely resistant to micafungin recording 100%. C. albicans, C. kruesi, and C. dubliniensis were susceptible to fluconazole at 70.7%, 64.3%, and 25.0%, respectively, while C. tropicalis (100%), C. glabrata (100%), and C. dubliniensis (75.0%) resistant was displayed against fluconazole. All Candida species were extremely resistant to Nystatin recording 100% each. In Table 3, the plant-derived antifungal susceptibility patterns of Cocos nuficera oil were also studied using the agar-well diffusion technique; all the Candida species were 100% susceptible to Cocos nucifera oil at 100 mg/ml, 50 mg/ml, and 25 mg/ml (1:0, 1:2, and 1:4 dilutions) concentrations.

Table 1. Percentage occurrence of isolated C	<i>Candida</i> species f	from clinical specimens

	No. Sampled	C. albicans (%)	C. tropicalis (%)	C. dubliniensis (%)	C. kruesi (%)	C. glabrata (%)	Occurrence (%)
Mid-stream Urine	100	6 (6.0)	2 (2.0)	3 (3.0)	0 (0.0)	11 (11.0)	22 (22.0)
HVS	100	20 (20.0)	7 (7.0)	5 (5.0)	8 (8.0)	3 (3.0)	43 (43.0)
ECS	100	15 (15.0)	3 (3.0)	0 (0.0)	6 (6.0)	9 (9.0)	33 (33.0)
Total	300	41 (41.0)	12 (12.0)	8 (8.0)	14 (14.0)	23 (23.0)	98 (32.7)

Key: HVS-High Vaginal swabs, ECS-Endo Cervical swabs

 Table 2. Conventional antifungal agent susceptibility profile of Candida species from clinical specimens

	Voricon	azole	Ampho	tericin B	Micat	fungin	Fluco	nazole	Nys	statin
	S (%)	R (%)	S (%)	R (%)	S (%)	R (%)	S (%)	R (%)	S (%)	R (%)
<i>C. albicans</i> $(n_0 = 41)$	41 (100)	0 (0.0)	17 (41.5)	24 (58.5)	0 (0.0)	41 (100)	29 (70.7)	12 (29.3)	0 (0.0)	41 (100)
C. tropicalis ($n_0 = 12$)	11 (91.7)	1 (8.3)	0 (0.0)	12 (100)	0 (0.0)	12 (100)	0 (0.0)	12 (100)	0 (0.0)	12 (100)
C. dubliniensis $(n_0 = 8)$	8 (100)	0 (0.0)	6 (75.0)	2 (25.0)	0 (0.0)	8 (100)	2 (25.0)	6 (75.0)	0 (0.0)	8 (100)

International Journal of Pharmaceutical and Phytopharmacological Research (eIJPPR) | February 2023 | Volume 13 | Issue 1 | Page 13-18 Chinenye Nwankwo, *In Vitro* Assessment of Conventional and Plant-derived Antifungal Agents against *Candida* Species Prevalence among Pregnant Women in Southeastern Nigeria

C. krusei ($n_o = 14$)	14 (100) 0 (0.0) 1	(7.1) 13 (92.9)	5 (62.5) 3 (37.5	9 (64.3)	5 (35.7)	0 (0.0) 14 (100)
C. glabrata ($n_0 = 23$)	19 (82.6) 4 (17.4) 23	8 (100) 0 (0.0)	23 (100) 0 (0.0)	0 (0.0)	23 (100)	0 (0.0) 23 (100)

Key: R-Susceptible, R-Resistance

Ratio	1:	0	1:	2	1:4 25 mg/ml		
Concentration	100 mg/ml	(undiluted)	50 m	g/ml			
Candida Species	S (%)	R (%)	S (%)	R (%)	S (%)	R (%)	
C. albicans $(n_0 = 41)$	41 (100)	0 (0.0)	41 (100)	0 (0.0)	41 (100)	0 (0.0)	
C. tropicalis ($n_0 = 12$)	12 (100)	0 (0.0)	12 (100)	0 (0.0)	12 (100)	0 (0.0)	
C. dubliniensis $(n_o = 8)$	8 (100)	0 (0.0)	8 (100)	0 (0.0)	8 (100)	0 (0.0)	
C. glabrata ($n_0 = 23$)	23 (100)	0 (0.0)	23 (100)	0 (0.0)	23 (100)	0 (0.0)	
C. krusei ($n_0 = 14$)	14 (100)	0 (0.0)	14 (100)	0 (0.0)	14 (100)	0 (0.0)	

Key: R-Susceptible, R-Resistance

C. albicans (41.0%) was the most prevalent Candida species found in the clinical samples of pregnant women in our study. Our observations corroborate with the published report in two earlier studies in Abakaliki South Eastern Nigeria [16, 20], Ethiopia, India, Iran, and Senegal [1, 13, 14, 21]. The high prevalence of C. albicans in our study clearly shows their dimorphic, invasiveness, and indwelling characteristics in catheter medical devices. Also, hormonal imbalance during pregnancy may increase their successful proliferation and colonization of the host. Earlier published findings show that the growth and adherence of C. albicans to the urogenital epithelium is enhanced by an elevated level of estrogen which may increase the risk of vaginal candidiasis. C. albicans is the most predominant species that inhabit and causes genital thrush in women [22].

However, the progressive alteration in the prevalence of *C. albicans* over the last decade has enhanced the occurrence of *C. dubliniensis, C. tropicalis C. glabrata,* and *C. kruesi* often described as non-albicans *Candida* species (NAC) [23]. Notably, non-albicans *Candida* species have been implicated to be the common cause of opportunistic fungal infection [1, 2] with increased significant morbidity among immune-compromised patients. Excessive and indiscriminate broad-spectrum antifungal usage, emerging viral diseases, and metabolic disorders are the mainstay for an increase in the occurrence of opportunistic fungal infectious diseases [2, 21].

In our findings, the conventional antifungal agent susceptibility features of *Candida* isolates were studied and *C. krusei* emerged with a 64.3% level of susceptibility to the azole group (fluconazole), which is similar to the result of Elfeky *et al.* [24] who published that 60% of the species were susceptible to the fluconazole but in contrast, *C. krusei* 100% susceptibility to fluconazole has been reported in Ethiopia [1] and elsewhere [25]. Resistant to azole antifungals such as the fluconazole in our study

indicate enhanced progression of susceptible to naturally resistant species of *C. tropicalis, C. tropicalis, C. dubliniensis,* and *C. glabrata* due to the excessive use of azole (fluconazole) as a standard agent in the management of yeast infection.

Voriconazole was highly effective against *Candida* species. All *Candida* species were susceptible to the Voriconazole at 100% except two species of *C. glabrata* at 82.6% and *C. tropicalis* at 91.7%. However, the azole antifungal agents are designed for the inhibition of ergosterol synthesis but the variation between the degree of susceptibility to voriconazole and fluconazole against *Candida* species in our study remains unclear. However, our findings opined this discrepancy to excessive and indiscriminate use of fluconazole over time in the treatment of severe invasive and non-life threatening *Candida* infections.

C. glabrata and C. krusei were the only Candida species susceptible to micafungin at 62.5% and 100%, respectively. Micafungins are designed to inhibit the enzyme that synthesizes β -glucan essential in fungal cell wall synthesis. The resistance demonstrated against this agent by C. tropicalis, C. dubliniensis, and C. albicans is in contrast with the findings of Seck and colleagues [21] in Dakar Senegal, and also Umamaheshwari and Sumana [14] in southern India where all Candida species were 100% susceptible to micafungin. This observation strongly portrays an alarming trend in the epidemiological surveillance of antifungal resistance between different geographical regions. The resistant species may possess virulence determinants such as efflux pumps, that aid in the movement or transportation of antifungal agents out of the fungal cell membrane. This mechanism is part of human cells but is also expressed by yeasts [8] and also sequestration of antifungal agents can be a contributing factor.

C. glabrata (100%), *C. dubliniensis* (75.0%), and *C. albicans* (41.5%) susceptibility to amphotericin B could be linked to the agent's respective size, hydrophobicity, and no interaction or possession of substrate for the efflux pump.

In our result, we observed a reduced susceptibility of *Candida* species to nystatin, micafungin, amphotericin B, and fluconazole. We could correlate this finding with their broad availability for both enteral and parenteral administration and the low cost of the antifungal agent which could serve as the pointer to the looming threat of emerging antifungal resistance that will gradually become a worldwide crisis.

Candida species were 100% susceptible to Cocos nuficera oil at 25 mg/ml, 50 mg/ml, and 100 mg/ml (1:4, 1:2, and 1:0 dilutions) concentrations. This plant-derived antifungal agent showed promising in vitro antifungal activity against the isolate. Although, the mechanism of action of this plant-derived antifungal agent remains unclear few published studies have attributed its efficacy to the presence of ample quantity of Saturated Aliphatic Monocarboxylic Acid (SAMA) such as palmitic acid, caproic acid, oleic acid, lauric acid, caprylic, etc. [16]. These SAMAs are fatty acids with distinct fungicidal modes of action reported against C. albicans [16]. The SAMAs insertion into the fungal bilayer is capable of cell membrane disruption resulting in an increased osmotic gradient causing generalized and indefinite cell disintegration [16]. Our findings have indicated that Cocos nuficera oil is a good antifungal agent if properly harnessed for in vivo utilization.

CONCLUSION

This study gives an outline of *Candida* species susceptibility to the conventional and plant-derived antifungal agents as voriconazole appeared as a better option for the management of *Candida* infection in this study while *in vitro* susceptibility assay of another conventional antifungal agent such as micafungin, amphotericin B was not distinctive among certain species, their selection for empirical antifungal treatment should rely on the outcomes of this study. Also, *Cocos nuficera* oil plant-derived antifungal agents were effective on *Candida* species. Against this backdrop, further *in vivo* pharmacological studies need proper quantification and application as a veritable alternative to contemporary medicine for *Candida* infection.

There is a paucity of molecular surveillance on antifungal resistance, more studies are needed on molecular and genotyping screening of antifungal resistance pathways that will support the synthesis of novel antifungal agents that will avert antifungal resistance. Guidelines in health care should be geared toward antifungal stewardship programs, prevention, and control of nosocomial and drug resistance spread.

Acknowledgments: Our appreciation goes to the staff and management of the University of Nigeria Teaching Hospital (UNTH), Ituku Ozalla, Enugu, Nigeria for the administrative support in carrying out this study.

Conflict of interest: None

Financial support: None

Ethics statement: Ethical approval with reference No: UNTH/234/RC/12 was obtained from the Research and Ethics Committee of the University of Nigeria Teaching Hospital (UNTH), Ituku ozalla, Enugu, Nigeria. All experiment in this study was executed following relevant national and international guidelines.

REFERENCES

- Seyoum E, Bitew A, Mihret A. Distribution of *Candida albicans* and nonalbicans *Candida* species isolated in different clinical samples and their in vitro antifungal susceptibility profile in Ethiopia. BMC Infect Dis. 2020;20(1):231-5.
- [2] Yassin MT, Mostafa AA, Al-Askar AA, Bdeer R. In vitro antifungal resistance profile of *Candida* strains isolated from Saudi women suffering from vulvovaginitis. Eur J Med Res. 2020;25(1):1-23.
- [3] Zavalishina SY, Bakulina ED, Eremin MV, Kumantsova ES, Dorontsev AV, Petina ES. Functional changes in the human body in the model of acute respiratory infection. J Biochem Technol. 2021;1:12(1):22-6.
- [4] Sharma M, Chakrabarti A. Candidiasis and other emerging yeasts. Curr Fungal Infect Rep. 2023;17(1):15-24.
- [5] Kumar S, Kumar A, Roudbary M, Mohammadi R, Černakova L, Rodrigues CF. Overview of the infections related to rare *Candida* species. Pathogens. 2022;11(9):1-45.
- [6] Costa-de-Oliveira S, Rodrigues AG. *Candida albicans* antifungal resistance and tolerance in bloodstream infections: the triad yeast-hostantifungal. Microorganisms. 2020;8(2):154-7.
- [7] Neerja J, Aruna A, Paramjeet G. Significance of *Candida* culture in women with vulvovaginal symptoms. J Obstet Gynecol India. 2006;56(2):139-41.
- [8] Bauters TG, Dhont MA, Temmerman MI, Nelis HJ. Prevalence of vulvovaginal candidiasis and

susceptibility to fluconazole in women. Am J Obstet Gynecol. 2002;187(3):569-74.

- [9] Ghasemi M, Javadnoori M, Cheraghian B, Abbaspoor Z. HIV+ women's reproductive and sexual health in Iran: studying samples referring to behavioral diseases counseling centers. J Adv Pharm Educ Res. 2021;11(3):150-6.
- [10] Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol. 2016;42(6):905-27.
- [11] Milanda T, Fitri WN, Barliana MI, Chairunnisaa AY, Sugiarti L. Antifungal activities of *Medinilla* speciosa Blume fruit extracts against *Candida* albicans and *Trichophyton rubrum*. J Adv Pharm Educ Res. 2021;11(3):1-8.
- [12] Hong N, Lei Y, Chen H, Chen X, Tsui KM, Hu D, et al. Genotyping and drug resistance profile of clinical isolates of *Candida albicans* from vulvovaginal candidiasis in Eastern China. Mycopathologia. 2022;187(2-3):217-24.
- [13] Sharifi M, Badiee P, Abastabar M, Morovati H, Haghani I, Noorbakhsh M, et al. A 3-year study of *Candida* infections among patients with malignancy: etiologic agents and antifungal susceptibility profile. Front Cell Infect Microbiol. 2023;13:1152-552.
- [14] Uma Maheshwari SI, Sumana MN. Retrospective analysis on distribution and antifungal susceptibility profile of *Candida* in clinical samples: a study from Southern India. Front Public Health. 2023;11:1160-841.
- [15] Kumar R, Singh G. Substituted benzimidazoles as antibacterial and antifungal agents: a review. Pharmacophore. 2022;13(2):41-55.
- [16] Orji JO, Nwankwo CE, Onwuliri EA, Oru CM, Okoye AU, Inyogu JC, et al. Comparative analysis of antifungal effects of home made and commercially available virgin coconut oil on vulvovaginal *Candida* species in Abakaliki. Int J Mod Pharm Res. 2021;5(4):01-03.
- [17] Peter IU, Edemekong C, Balogun OM, Ikusika BA, Ngwu JN, Bassey NU, et al. Phytochemical screening

and antibacterial activity of aqueous extract of costus afer plant on selected multidrug-resistant bacteria. IOSR J Pharm Biol Sci. 2022;17(1):39-42.

- [18] Ude IU, Moses IB, Okoronkwo C, Ovia K, Okafor C, Chukwunwejim CR, et al. Phytochemical properties and antimicrobial activity of *Buchholzia coriacea* and *Psychotria microphylla* leaf extracts on bacterial pathogens isolated from aquatic environments in Nigeria. J Med Plants Res. 2021;15(6):232-40.
- [19] Sanguinetti M, Porta R, Sali M, La Sorda M, Pecorini G, Fadda G, et al. Evaluation of VITEK 2 and RapID yeast plus systems for yeast species identification: experience at a large clinical microbiology laboratory. J Clin Microbiol. 2007;45(4):1343-6.
- [20] Nwankwo CE, Orji JO, Opara JK, Oru CM, Ugadu IO, Inyogu JC, et al. Antifungal susceptibility profile of genitourinary *Candida* species AMONG women attending a tertiary hospital in Abakaliki, Nigeria. IOSR J Pharm Biol Sci. 2021;16(1):01-04.
- [21] Seck MC, Engo PE, Gueye PAT, Faye C, Mbow M, Diongue K, et al. Identification and antifungal susceptibility of *Candida* species isolated from vulvovaginal candidiasis in Dakar. J Yeast Fungal Res. 2023;14(1):1-7.
- [22] Krishnasamy L, Krishnakumar S, Santharam P, Saikumar C. Isolation and identification of *Candida* species in patients with Vulvovaginal candidiasis. J Pure Appl Microbiol. 2018;12(4):2269-73.

18

- [23] Amiri M, Eghbali T, Miladi R, Omidi D. Evaluation of sexual satisfaction in pregnant women with vaginal candidiasis. Entomol Appl Sci Lett. 2021;8(1):52-9.
- [24] ElFeky DS, Gohar NM, El-Seidi EH, Ezzat MM, Hassan S, AboElew SH. Species identification and antifungal susceptibility pattern of *Candida* isolates in cases of vulvovaginal Candidiasis. Alexandria J Med. 2016;52(3):269-77.
- [25] Bitew A, Abebaw Y. Vulvovaginal candidiasis: species distribution of *Candida* and their antifungal susceptibility pattern. BMC Womens Health. 2018;18(1):94-8.

3)