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ABSTRACT 
Biofilm is known as a community of single or multi species of microorganisms, including bacteria. Bacteria in 
biofilms have increased resistance to antimicrobials that may reach 10 to 1000 times more than the minimal 
inhibitory concentrations required for free-living bacteria. The increased antimicrobial resistance is thought to 
be due to pathways other than the conventional resistance mechanisms seen in free-living (planktonic) bacteria. 
There is no single general mechanism that explains biofilm resistance to antimicrobials; it is rather a complex 
process that involves a growing list of many factors. Several studies support the increasing number of resistance 
mechanisms, which are categorized in six classes: extracellular matrix, altered microenvironment, stress 
response, quorum-sensing, presence of persisters, and bacterial outer membrane proteins; in addition to other 
mechanisms that do not fall under these six general categories. A full understanding of biofilm resistance 
mechanisms will help researchers to develop effective treatment strategies for eradicating biofilm-based 
infections in the future.  
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INTRODUCTION 

Most bacteria in our environment are found as aggregates 

rather than free-floating bacteria. These aggregates encase 

themselves in a polymer of extracellular matrix composed 

mainly of exopolysaccharide (EPS) [1, 2]. Such aggregates 

of microorganisms are known as biofilms that are 

composed of either single or multiple species, which may 

reach > 500 different species [3]. The formation of biofilms 

starts when planktonic bacteria attach to almost any solid 

surface, biotic or abiotic [4]. Then, adherent bacteria 

secrete cell-to-cell signaling molecules and upon reaching 

a certain threshold, depending on attached cells density, 

they cause alterations in bacterial gene expression that 

favor biofilm formation [5]. Presence in a community 

benefits bacteria in several aspects. As bacteria grow in a 

biofilm, they form an increasing mass of microorganisms 

within the EPS that prevents the bacteria from being 

phagocytized by host immune cells. At the same time, the 

extracellular polymer prevents complement-mediated lysis 

as well as opsonization. While encapsulation in a spore-

like structure helps bacteria to cope with adverse 

environmental effects such as starvation, low pH, and 

mechanical damage [1, 6].  

Bacteria in biofilms become resistant to antimicrobial 

drugs, which may reach up to 1000 times higher 

concentrations than the minimal inhibitory concentrations 

(MICs) required for its free-floating counterpart [7, 8]. 

This resistance begins as early as the organism attaches to 

a surface and gradually increases as the biofilm grows up 

in age and can be seen almost in any organism capable of 

forming biofilm [9, 10]. Due to increased antimicrobial 

resistance, biofilms can cause persistent and difficult to 

treat infections that are associated with many medical 

conditions especially cystic fibrosis, periodontitis, 

osteomyelitis, prosthetic joint, and indwelling medical 

devices infections, as well as many other nosocomial 
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infections [11]. There are about 1 million nosocomial 

infection cases related to biofilm in indwelling medical 

devices in the United States each year [11, 12]. Treatment 

of such infections costs a tremendous amount of effort and 

money that is estimated to be 6 billion dollars a year in the 

United States [13]. In addition, they compromise patients’ 

health and increase their trauma, especially in the case of 

implanted medical devices where the most successful 

treatment is the removal of the implant [14].  

Conventional antibiotic resistance mechanisms of 

planktonic bacteria do not seem to play a major role in 

biofilm resistance to antibiotics such as target site 

mutations, reduced membrane permeability, enzymatic 

breakdown of antibiotics, efflux pumps, and antibiotic 

neutralization and modification [15]. Most of these 

mechanisms are usually irreversible. However, resistant 

bacteria within biofilms retain their sensitivity to 

antibiotics when they switch to the free-floating stage [8]. 

For example, the role of the efflux pump was investigated 

by studying the role of multiple drug resistance (mar) loci. 

It has been found that the genes encoding for the pump 

were not induced during the biofilm phase of growth; 

furthermore, deletion of the mar gene in Escherichia coli 

showed relatively the same resistance pattern to 

ciprofloxacin in biofilm as wild-type bacteria [16]. In 

another study, Pseudomonas aeruginosa strain that lack 

MexAB-OprM multi-drug resistance pump remained 

resistant to ciprofloxacin [17]. Similarly, the biofilm 

formed by Klebsiella pneumoniae mutant that lacked ß-

lactamase activity was still able to show reduced 

susceptibility to ampicillin [18]. Antibiotic resistance in 

biofilms is not attributed to one mechanism solely. It is 

usually a complicated process that includes many factors 

and may vary in different organisms that could utilize more 

than one mechanism of resistance at the same time [8, 19]. 

To date, the hypothesized mechanisms for biofilms 

resistance are related to the external matrix barrier, altered 

microenvironment, stress response, quorum-sensing, 

persisters population, and bacterial outer membrane 

proteins. Furthermore, additional resistance mechanisms 

have been identified that do not belong to these different 

categories. Each one of these mechanisms is discussed in 

this review. 

Resistance mechanisms 

Extracellular matrix 

The first mechanism that may explain biofilm antibiotic 

resistance is the mechanical barrier served by EPS that 

could prevent or slow down the diffusion of antimicrobial 

drugs [20, 21]. de Beer et al. [22] have measured the 

concentration of chlorine using a microelectrode in biofilm 

formed by P. aeruginosa and K. pneumoniae. They 

revealed that the concentration of chlorine within the 

biofilms was 80% less than that found in the bulk solution 

[22]. Furthermore, diffusion of piperacillin was impaired 

in biofilms formed by P. aeruginosa grown on dialysis 

membranes [23]. One reason for the reduced penetration 

could be due to the stimulation of EPS production by 

antibiotics, which has been seen with other antimicrobial 

agents [24]. Increasing the mass of EPS will make it more 

difficult for the antibiotic to penetrate the biofilm and reach 

bacteria. In return, this results in the exposure to sublethal 

concentrations of the antibiotics' inner bacteria within the 

biofilm, which promotes the development of mutational 

resistance [25]. Alternatively, it has been proposed that the 

negatively charged matrix could bind and prevent the 

penetration of positively charged antibiotics [26]. For 

example, alginate, an anionic EPS produced by P. 

aeruginosa, was shown to trap and slow down the diffusion 

of cationic antimicrobials including tobramycin and 

antimicrobial peptides in biofilms, which protects the 

bacteria from antimicrobial killing action [27, 28]. 

Decreasing the rate of penetration may give more time for 

enzymes produced by bacteria within biofilms to neutralize 

and break down the antimicrobial agents [7], which may 

explain the deactivation of ampicillin in biofilms of ß-

lactamase-negative K. pneumoniae strain compared to 

wild-type [29]. However, the mechanical barrier does not 

seem to be the only factor for resistance since a wider range 

of antibiotics including ampicillin, ciprofloxacin, 

tetracycline, and rifampin can efficiently penetrate 

biofilms [30].  

Altered microenvironment 

Within biofilms, there is a concentration gradient of 

nutrients, which could affect the rate of bacterial growth 

and the shape of biofilm [31]; depletion of nutrients and 

accumulation of waste products in the inner part of the 

biofilm forces the inner bacteria to slow down their 

metabolic activity to a point that some bacteria become 

metabolically inactive [32]. Since many antibiotics' action 

depends on the growth rate and metabolic activity of 

bacteria (such as penicillins), and their bactericidal effect 

is directly proportional to bacterial growth rate, slowing 

down the growth rate may render these antimicrobial 

agents ineffective [33]. For example, the susceptibility of 

P. aeruginosa, E. coli, and Staphylococcus epidermidis to 

ciprofloxacin was shown to be dependent on growth rate in 

which increasing the growth rate resulted in higher 

susceptibility [34-36]. In addition to nutrient gradient, 

oxygen was found to be abundant at the biofilm surface and 

decreased gradually towards the center of the biofilm, 

forming an anaerobic zone at the inner portions of biofilm 

[37, 38]. Oxygen availability can alter the effectiveness of 

some antibiotics such as aminoglycosides, which work 

optimally under aerobic conditions [39, 40]. Furthermore, 

the accumulation of acidic waste products in the inner area 

of the biofilm can introduce pH differences that can modify 
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the action of antibiotics [41, 42]. However, additional 

factors must be involved in the resistance mechanism other 

than slow growth due to nutrient limitation and different 

oxygen gradients, which is supported by increased 

resistance of Burkholderia cepacia biofilms to 

ciprofloxacin with the increased growth rate of the bacteria 

within the biofilm [43].  

Altered microenvironment 

Both planktonic and sessile (attached) bacteria have 

induced responses to environmental stresses such as 

temperature fluctuation, pH changes, antimicrobial 

compounds, and DNA damage [44, 45]. However, sessile 

bacteria may have a better chance to express these 

responses than planktonic bacteria due to the delayed 

transportation of antibiotics or reduced metabolic activity, 

as described earlier. The first stress response system that 

shows a link to resistance in biofilms is the RpoS system 

[46]. Its importance in biofilms has been illustrated by the 

failure of ∆rpoS E. coli mutant strain to form a mature 

biofilm, which showed a 50% reduction in size compared 

to wild-type [47]. Also, rpoS transcript was detected in 

sputa of cystic fibrosis patients [48], which was thought to 

be a key molecule in the survival of bacteria in this harsh 

environment [49]. It has been recently postulated that the 

slow growth of bacteria in biofilms is not a result of 

reduced nutrient concentrations; but rather an outcome of 

stress responses in mature biofilm [49]. A second stress 

response sigma factor, named AlgT, has been identified in 

P. aeruginosa [50]. The role of AlgT and RpoS in 

mediating P. aeruginosa resistance to hydrogen peroxide 

(H2O2) and monochloramine has been studied by Cochran 

et al. [51]. They have constructed two knockout mutant 

strains in which each strain lacked one sigma factor. Both 

mutants were susceptible to H2O2 and resistant to 

monochloramine in 24-hour old biofilm formed on alginate 

beads compared with the wild-type strain that was resistant 

to both compounds [51]. Although AlgT and RpoS stress 

response systems have an association with biofilm 

formation and resistance, their exact mechanism in biofilm 

resistance to antimicrobial is still unknown. On the 

contrary, P. aeruginosa rpoS mutants formed biofilms that 

were approximately 4 times thicker than the wild-type 

strain and had much higher resistance to tobramycin and 

other antibiotics compared to wild-type bacteria [26, 52]. 

Taken together, these observations highlight the 

involvement of more factors in biofilms' resistance to 

antimicrobials [53, 54]. 

Quorum-sensing 

Quorum-sensing (QS) compounds are small signaling 

molecules that are secreted by bacteria in biofilms to 

enable them to communicate with each other and alter the 

expression of the number of genes involved in virulence, 

motility, biofilm formation, and maintenance in both 

Gram-positive and negative bacteria [55, 56]. Their role in 

biofilms resistance to antimicrobials was first described by 

Davies et al. [57] who showed that P. aeruginosa that lacks 

one of the two quorum-sensing genes, ∆LasI, formed 

biofilms that were flat and more sensitive to sodium 

dodecyl sulfate (SDS) compared to the wild-type strain. 

Upon supplying these biofilms with synthetic signaling 

molecules, mutant bacteria retained both normal biofilm 

architecture and resistance to SDS [57]. Furthermore, 

blocking QS by different drugs renders biofilms more 

susceptible to several antimicrobials [7, 58-62]. 

Interestingly, it has been shown that P. aeruginosa biofilm 

was able to kill polymorphonuclear leukocytes (PMNs) by 

rhamnolipid B; a detergent that mediates necrosis of 

PMNs. Rhamnolipid B expression is under the control of 

QS, which represents an indirect role of QS molecules in 

avoiding immune system-mediated killing [63]. Again, the 

overall contribution of QS in biofilm-mediated resistance 

to antimicrobial is not fully understood. 

Role of persisters 

Persisters are a subpopulation of bacteria that enter a non-

heritable and reversible high resistance state to 

antimicrobials and chemical disinfectants even with 

prolonged treatment [64]. They exist in both biofilm 

embedded and planktonic bacteria. However, they are 

found in much higher numbers in biofilms [65]. It has been 

demonstrated that exposure of E. coli in biofilms to 

imipenem and ciprofloxacin resulted in the eradication of 

most of the biofilms bacteria, but a small population 

remained resistant to further higher concentrations of these 

antibiotics [66]. Based on these findings and others, a 

model for the role of persisters in biofilm-based infections 

has been proposed [67], in which administration of 

antimicrobial agents to patients with the biofilm-based 

infection will eradicate the free-floating and most biofilm 

bacteria, but they will fail to remove persisters and the 

biofilm mass. As a result, persisters embedded in biofilm 

mass are protected from antimicrobial-mediated killing, 

and recurrence is always seen when treatment is stopped 

[68]. Yet, how bacteria enter this state is still elusive. 

Switching to this phenotype could be triggered by high cell 

density, limited nutrition, environmental stress, or 

amalgamation of these factors. Nevertheless, the 

development of persisters is accompanied by low 

expression of genes coding for metabolic activities (i.e. the 

bacteria are metabolically inactive), overexpression of 

stress response elements and toxin/antitoxin systems, and 

high expression of glpD and plsB (potential persisters 

genes) [69-73].  

Bacterial outer membrane proteins 
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Alteration of bacterial outer membrane proteins affects 

antibiotics permeability and has been proposed as an 

important mechanism for increased biofilms tolerance to 

antibiotics [74-76]. In E. coli K-12, the permeability of low 

molecular weight hydrophilic compounds is regulated via 

the outer membrane porin proteins such as OmpF and 

OmpC. Mutants in ompB, a gene that controls the 

expression of OmpF and OmpC, and OmpF have been 

linked to increased resistance to ß-lactams and cefoxitin 

[77]. Furthermore, mutant E. coli that lacked OmpF outer 

membrane protein, which is under the regulation of 

respiratory quinol oxidase cytochrome bd [78], showed 

increased resistance to chloramphenicol and tetracycline 

[79]. Recently, a link between free DNA in biofilms 

extracellular matrix has been described where it was found 

to work as a cation chelating agent which reduces the level 

of cations in the surrounding environment that will 

ultimately affect the bacterial outer membrane and reduce 

the permeability of antibiotics, including cationic 

antimicrobial peptides and aminoglycosides [80, 81]. The 

disruption of the extracellular DNA results in increased 

susceptibility to antimicrobials [82]. Taking together all 

the previous findings, change in permeability of bacterial 

outer membrane proteins is likely to occur in biofilms and 

is involved in high biofilm resistance to antimicrobials [83-

85]. 

Other mechanisms 

Additional biofilm resistance mechanisms that do not fall 

under the previously outlined categories have also been 

described. One example is circular glucans. Mah et al. [86] 

demonstrated that mutation in the ndvB gene, which is 

essential for the production of periplasmic glucans, in P. 

aeruginosa resulted in bacterial strains that were capable 

of producing similar biofilm architecture to the wild-type 

but were less resistant to tobramycin. This observation 

suggests that circular glucans expression works by 

sequestering tobramycin, rendering the bacteria resistant to 

tobramycin [41]. Another resistance mechanism was 

discovered while screening P. aeruginosa transposon 

mutants that lost that antibiotic resistance in biofilm [87]. 

This study identified two genes, PA1874 and PA1877, that 

formed a novel type of efflux bump highly expressed in 

biofilms and involved in high resistance of P. aeruginosa 

biofilm to several antibiotics including tobramycin [88]. 

Finally, a recent report demonstrated the coexistence of 

pyocyanin-sensitive bacteria with pyocyanin-producing 

bacteria within the same biofilm, only when the biofilm 

was established with both strains together. This 

observation suggests that pyocyanin-sensitive bacteria 

encase themselves with pyocyanin-resistant bacteria, 

which results in protecting the former from antibiotic 

action [89]. 

CONCLUSION 

The mechanisms that render biofilms resistant to 

antibiotics are complicated and multi-factorial. If we 

imagined a community of microorganisms, we would 

realize that each organism within this community could be 

under different conditions and may be exposed to different 

stress factors. For example, bacteria that occupy the inner 

part of the biofilm may have limited nutrition and a higher 

concentration of cell-to-cell communication molecules. On 

the other hand, if we moved from the biofilm center, 

bacteria at the periphery will be exposed to a higher 

concentration of antimicrobials than the central area, which 

may trigger the stress response mediated resistance. 

Moreover, bacteria that are in direct contact with the 

surface that the biofilm is attached to may be exposed to 

different factors (s) that could trigger other mechanisms. 

The overall picture of biofilm-mediated resistance to 

antibiotics will continue to expand and more resistance 

mechanisms are likely to be discovered in the future. 

We should also notice that most of the experiments that 

have been conducted to elucidate these mechanisms are 

based on in vitro models using a single microorganism, 

which is different from what is seen in real life. Biofilm-

based infections are usually composed of more than one 

species that cooperatively interact with each other and 

survive better than single-species biofilm in the presence 

of different antibacterial agents [38, 90, 91]. Furthermore, 

bacteria in biofilms interact with the surface that they are 

formed on. Therefore, in vivo approach may provide more 

realistic findings that may further confirm or contradict the 

in vitro results. All these factors will add more 

complication to the understanding of the overall resistance 

mechanisms in biofilm. 

The obscurity of the biofilm resistance is an open sea for 

future research. In the beginning, there is a strong demand 

to shift from in vitro experiments to in vivo systems by 

finding a suitable animal model. Such experiments may 

lead to discoveries of new findings and mechanisms. 

Furthermore, the development of standard procedures to 

grow biofilms and test their resistance may reduce the size 

of contradiction and increase the consistency of results. 

Finally, metatranscriptomics and metaproteomic studies 

have shown several alterations in gene expression of global 

proteins when the bacteria switch to biofilm formation. 

These differentially expressed genes and proteins may hide 

valuable information that could further broaden our 

knowledge about biofilms; thus, they could be excellent 

targets for future work that could aid in the discovery of 

new anti-biofilm drugs for eradicating biofilm-based 

infections.  
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